#### TU831 TECH1106 TDS

Project 3 Part A: Foundations and Ground Floor Analysis

Group B1 – Sean Molloy, Emma Byrne, Odeta Gudonyte, Sultan Muhammed, Ling Zhao, Jack Vaughan.

#### Raft Foundation / Partial Fill Wall



#### Viking Triple L / Partial Fill Wall



#### Partial Fill Wall U-Value

- Partial Fill (on Viking Triple L): 400mm Wall, 150mm Insulation
  U-Value: 0.19w/m2K
- Partial Fill (On Raft Foundation): 350mm Wall, 100mm Insulation
- U-Value: 0.26w/m2K

### Strip foundation with solid ground and a partial fill cavity

- Hardcore, Sand Blinding, Radon Barrier, Rigid Insulation, Concrete Slab, Screed.
- Hardcore, Sand blinding and D.P.M (TGD C, section 3.1.4)

Emma Byrne





#### Calculation of Thermal Performance

|                  | Thickness<br>(In metres <i>,</i> d) | Thermal Conductivity<br>(W/mK, λ) | Thermal Resistance<br>(M <sup>2</sup> K/W) R = d/λ |
|------------------|-------------------------------------|-----------------------------------|----------------------------------------------------|
| XPS Insulation   | 0.160                               |                                   | 4.20                                               |
| Concrete         | 0.150                               | 0.16                              | 0.9375                                             |
| Screed           | 0.075                               | 0.41                              | 0.182                                              |
| Total Resistance |                                     |                                   | 5.3195                                             |
| U-value= 1       |                                     |                                   | 0.18 ( <i>W/m<sup>2</sup>·K</i> )                  |

### Strip foundation with Raised Timber Floor and a partial fill cavity.



**The Environmental Protection Agency** 

#### Emma Byrne

#### Partial Fill Wall U-Value

Partial Fill wall:

U-Value= 0.26 (W/m2·K)

Emma Byrne

#### Raft foundation with full fill cavity wall



2D drawing of raft foundation with full fill cavity wall





3D drawing of raft foundation

Odeta Gudonyte

#### Full fill cavity wall with insulated foundation



2D drawing of insulated foundation

3D drawing of insulated foundation with full fill cavity wall

Odeta Gudonyte

### Calculation of Thermal Performance

|                                                         | Thickness<br>(In meters, d) | Thermal Conductivity<br>(W/mK, λ) | Thermal Resistance (M <sup>2</sup> K/W) R = $d/\lambda$ |
|---------------------------------------------------------|-----------------------------|-----------------------------------|---------------------------------------------------------|
| Internal resistance                                     |                             |                                   | 0.130                                                   |
| 12.5mm internal plasterboard                            | 0.0125                      | 0.25                              | 0.050                                                   |
| 100mm block inner leaf                                  | 0.1                         | 1.15                              | 0.087                                                   |
| 150mm Cavity insulation                                 | 0.15                        | 0.018                             | 8.333                                                   |
| 100mm Block outer leaf                                  | 0.1                         | 0.15                              | 0.087                                                   |
| 25mm external render                                    | 0.025                       | 1                                 | 0.025                                                   |
| External resistance                                     |                             |                                   | 0.040                                                   |
| Total thermal resistance                                |                             |                                   | 8.752                                                   |
| U value                                                 |                             |                                   | 0.114 W/m2K                                             |
| https://cavitytherm.com/wha<br>cavitytherm/cavitytherm/ | <u>t-is-</u>                |                                   | Odeta Gudonyte                                          |





Strip foundation solid ground supported cone ground floor





Strip foundation raised timber floor

#### 20th Century Full Fill Cavity Wall U- value

|                              | Thickness<br>(In meters, d) | Thermal<br>Conductivity (W/m<br>K, λ) | Thermal<br>Resistance<br>(M <sup>2</sup> K/W) R = d/λ |
|------------------------------|-----------------------------|---------------------------------------|-------------------------------------------------------|
| Concrete block<br>inner leaf | 100mm                       | 0.64                                  | 0.084                                                 |
| Rigid insultaion             | 100mm                       | 0.22                                  | 0.033                                                 |
| Concrete block<br>outer leaf | 100mm                       | 0.64                                  | 0.084                                                 |
| Plaster finish               | 20mm                        | 0.5                                   |                                                       |

### 21<sup>st</sup> Century Solid Wall on Raft Foundations

- Raft foundations carry loads from walls and spreads them over a large area.
- Commonly used on surfaces of low bearing capacity.
- Used on strata of varying compressibility, e.g. soft clays and peat.
- The edges of the reinforced concrete slabs are thickened.

#### 21<sup>st</sup> Century Solid Wall U-values

|                            | Thickness      | Thermal Conductivity | Thermal Re | esistance     |
|----------------------------|----------------|----------------------|------------|---------------|
| Wall Construction          | (in metres, d) | (W/mK <i>,</i> λ)    | (m²K/W) R  | $= d/\lambda$ |
| External Resistance        |                |                      |            | 0.06          |
| External Render            | 0.02           | 2                    | 1          | 0.02          |
| EPS 100 Insulation         | 0.15           | 5 0.0                | 3          | 5             |
| Block Inner Leaf           | 0.215          | <b>0.5</b>           | 7 0        | .377192982    |
| Gypsum Plaster             | 0.02           | 0.1                  | 8 0        | .055555556    |
| Service Cavity             | 0.025          | 5                    |            | 0.18          |
| Plasterboard               | 0.0125         | <b>0.2</b>           | 5          | 0.05          |
| Internal Resistance        |                |                      |            | 0.06          |
| Total Resistance           |                |                      | 5          | .802748538    |
| U-value W/m <sup>2</sup> K |                |                      | 0          | .172332127    |

https://www.housing.gov.ie/sites/default/files/publications/files/tgd\_l\_dwellings\_2019.pdf



External Insulation Solid Wall on Raft Foundations 1:10

### 21<sup>st</sup> Century Solid Wall on Insulated Foundations

- Insulated foundations eliminates the critical wall-floor Cold Bridge.
- Much quicker to install (Passive Slab), reduced labour costs (20%).
- Reduces the amount of concrete being poured (60% less). This lowers the carbon footprint of the house.
- Example: Viking House, Passive Slab, 3 layers of EPS 100 U-value of 0.105W/m<sup>2</sup>K.



External Insulation Solid Wall on Insulated Foundations 1:10

# External Insulation Solid Wall with raised timber floor on strip foundation



2D Construction of foundation floor and wall.

3D construction

Jack Vaughan

#### Advantages and Disadvantages

#### **Advantages**

Easy to install services (water, electricity, etc.)

- Convenient method to raise floor level if building
- Is using a stepped foundation.
- Excellent damp proofing against rising damp.

#### **Disadvantages**

Expensive and labour intensive to install.

Require a high level of workmanship.

Carry noise between room.

Airtightness is difficult to achieve.

# External Insulation Solid Wall with solid ground concrete slab and strip foundation



RADON BARRIER

#### 21st Century Solid Wall on Strip Foundation

• Advantages

Easy to install services (water, electrical ect.)

Provides excellent floor finish

• **Disadvantages** 

Requires much labour to install

Typically quite expensive

### Solid ground floor thermal performance

|                         | Thickness<br>(In meters, d) | Thermal Conductivity<br>(W/mK, λ) | Thermal Resistance (M <sup>2</sup> K/W) R = $d/\lambda$ |
|-------------------------|-----------------------------|-----------------------------------|---------------------------------------------------------|
| Concrete (subfloor)     | 1.50                        | 1.28                              | 1.171                                                   |
| Insulation(Thermafloor) | 1.0                         | 0.022                             | 45.45                                                   |
| Concrete screed         | .75                         | .41                               | 1.83                                                    |
| Total Resistance        |                             |                                   | 47.41                                                   |
| U-value                 |                             |                                   | 0.021                                                   |

http://dl.booktolearn.com/ebooks2/engineering/civil/9781118977163\_Barrys\_Introduction\_to\_ Construction\_of\_Buildings\_4th\_Edition\_0961.pdf

https://www.kingspan.com/irl/en-ie/product-groups/insulation-boards/therma/thermafloor-tf70

Jack Vaughan



# Thanks for listening.

• Any questions?