

APPROVED

MATH 3833: Linear Algebra With Applications

Module Details			
Module Code:	MATH 3833		
Module Long Title:	Linear Algebra With Applications APPROVED		
Banner Title:	Linear Algebra With Applictns		
Version:	1		
Indicative NFQ level:	Level 7		
Valid From:	Sept 2018 (September 2018)		
Language of Instruction:	English		
ECTS Credits::	7.5		
ISCED Code:	0541 - Mathematics		
Current Coordinator::	MILENA VENKOVA-MCGARRAGHY		
Module Coordinators:	MILENA VENKOVA-MCGARRAGHY (07 January 2020 to)		
School Responsible:	School of Mathematical Sciences (CC)		
Campus:	City Campus		
Module Overview	This module builds on knowledge gained in MATH 2831, developing concepts of abstract vector spaces, linear transformations and inner products, with particular emphasis on applications.		
Indicative Syllabus	Abstract Vector Spaces Abstract vector spaces over a field, subspaces. Bases and dimension. Linear transformations, change of basis and similar matrices. Eigenvectors and eigenvalues Characteristic polynomial, diagonalization and complex eigenvalues. Cayley-Hamilton theorem. Applications to differential equations, Markov chains and PageRank algorithm. Inner Product and Orthogonality Inner products, length, orthogonality, orthogonal sets and orthogonal matrices. Orthonormal bases and the Gram-Schmidt process, Fourier series and Legendre polynomials. Orthogonal projections and their applications to approximation theory.		
Learning and Teaching Methods	Lectures supported by tutorials		

Learning Outcomes					
Upon successful completion of this module the learner will be able to					
#					
MLO1	Prove general properties of abstract vector spaces.				
MLO2	produce change of coordinate m	atrices between two bases,			
MLO3	determine if two matrices are sir	nilar,			
MLO4	demonstrate an understanding of	of Stochastic matrices and Markov chains and their	applications,		
MLO5	find the steady-state vector of a	regular stochastic matrix,			
MLO6	demonstrate an understanding of	of the connection between eigenvectors and diagona	alization,		
MLO7	use eigenvalues and eigenvecto	rs for applications to difference equations and Mark	ov chains		
MLO8	demonstrate an understanding of	of the properties of inner products			
MLO9	recognize orthogonal sets and n	natrices			
MLO10	use the Gram-Schmidt process	to produce orthogonal or orthonormal bases			
MLO11	recognize the relationship betwe	en Fourier series and orthogonal bases			
MLO12	Use orthogonal projections in ap	plications to approximation theory.			
Requisites					
	Assessment Threshold 35% on final exam Module Content & Assessment				
Assessment Breakdown %					
Formal Examination					
Other Assessment(s)	Other Assessment(s) 30.00%				
Assessments					
Formal Examination					
Assessment Type		Written Examination	% of Total Mark for Module	70	
Indicative Week		Week 14	Learning Outcomes	1,2,3,4,5,6,7,8,9,10,11,12	
Assessment Thresh	old:	35	Assessment Role	Individual	
Assessment Authenticity Not Online		Not Online	Pass/Fail	No	
Assessment Descrip End of Semester exar	Assessment Description End of Semester examination				
Other Assessment(s	3)				
Assessment Type		In Class Test	% of Total Mark for Module	30	
Indicative Week See Stud		See Student Handbook	Learning Outcomes	1,2,3,4,5,6,7	
Assessment Thresh	old:	None	Assessment Role	Individual	
Assessment Authen	ticity	Not Online	Pass/Fail	No	
Assessment Descrip n/a	Assessment Description n/a				

Module MATH 3833 - Linear Algebra With Applications v1 (Year/Cycle: 1 / Semester: Semester 1 / Delivery Type:Mandatory)

Module Activity		
Full Time hours per semester		
Activity Type		Duration (Hours)
Lecture		39
Self Directed		111
	Hours (up to 100 for 5 ECTS credits)	150.00
Recommended Reading List		

Recommended Book Resources

DAVID. LAY LAY (STEVEN. MCDONALD, JUDI.), Steven Lay, Judi McDonald. Linear Algebra and Its Applications, Global Edition, [ISBN: 1292351217].

APPROVED

MATH 3837: Mechanics with Mathematical Modelling

Module Details		
Module Code:	MATH 3837	
Module Long Title:	Mechanics with Mathematical Modelling APPROVED	
Banner Title:	Mechanics with Modelling	
Version:	1	
Indicative NFQ level:	Level 7	
Valid From:	Sept 2020 (September 2020)	
Language of Instruction:	English	
ECTS Credits::	7.5	
ISCED Code:	0541 - Mathematics	
Current Coordinator::	Richard Ellard	
Module Coordinators:	 JOHN BUTLER (09 January 2020 to 06 January 2022) Richard Ellard (06 January 2022 to) 	
School Responsible:	School of Mathematical Sciences (CC)	
Campus:	City Campus	
Module Overview	This module introduces concepts from classical mechanics as well as basic techniques in mathematical modelling of real world problems. Using simple examples from mechanics, students will analyse data, make assumptions, construct mathematical models and interpret results.	
Learning and Teaching Methods	Lectures supported by problem-solving tutorials and laboratory sessions using mathematical software packages	
Indicative Syllabus		
1. Mechanics 1.1) Motion in one, two and th harmonic motion. Motion under	ree dimensions. Forces and Newton's laws of motion. Kinetic and potential energy. Conservation of energy. Collisions of two bodies: elastic and inelastic collisions. Hooke's Law and simple or a central force: uniform circular motion, angular velocity and acceleration, equations of motion.	
2. Mathematical Modelling		

2.1) Students are introduced to the topic of mathematical modelling and are asked to design and solve a mathematical model for different problems from mechanics. Examples may include projectile motion in sports science /ballistics, astronomy and spring-mass-damper systems.

Learning Outco	Learning Outcomes		
Upon successfu	Upon successful completion of this module the learner will be able to		
#			
MLO1	explain the concepts of velocity, acceleration, momentum, kinetic energy, potential energy, work, angular momentum and friction;		
MLO2	state Newton's laws of motion and apply them to solve simple problems in mechanics;		
MLO3	solve a range of problems involving collisions of two bodies;		
MLO4	describe and analyse simple harmonic motion;		
MLO5	describe and analyse motion under a central force;		
MLO6	take a real life problem in mechanics and, making the necessary assumptions, translate it into a mathematical model;		
MLO7	use mathematics and mathematical software to analyse and solve the problem and refine the assumptions if necessary.		
Requisites	Requisites		

Assessment Threshold

35% in the end of module written exam.

35% in the CA component.

Module Content & Assessment		
Assessment Breakdown	%	
Formal Examination	70.00%	
Other Assessment(s)	30.00%	

Assessments

Formal Examination					
Assessment Type	Written Examination	% of Total Mark for Module	70		
Indicative Week	Week 18	Learning Outcomes	1,2,3,4,5		
Assessment Threshold:	35	Assessment Role	Individual		
Assessment Authenticity	Not Online	Pass/Fail	No		
Assessment Description End of Semester Exam					
Other Assessment(s)	Other Assessment(s)				
Assessment Type	In Class Test	% of Total Mark for Module	30		
Indicative Week	See Student Handbook	Learning Outcomes	1,2,3,4,5,6,7		
Assessment Threshold:	35	Assessment Role	Not yet determined		
Assessment Authenticity	Not Online	Pass/Fail	No		
Assessment Description Continuous Assessment					

Module MATH 3837 - Mechanics with Mathematical Modelling v1 (Year/Cycle:1 / Semester:Semester 1 / Delivery Type:Mandatory)

Full Time hours per semester			
Activity Type		Duration (Hours)	
Lecture			39
Self Directed			111
	Hours (up to 100 for 5 ECTS credits)		150.00
Recommended Reading List			
Recommended Book Resources			
David Halliday, Robert Resnick, Jearl Walker. (2013), Fundamentals of Physics, Extended, John Wiley & Sons, p.14	48, [ISBN: 978-1-118-23072-5].		
Henry Mulholland, John Horace George Phillips. Applied Mathemathics for Advanced Level, [ISBN: 0408014458].			

Supplementary Book Resources

Herbert Goldstein, Charles P. Poole, John L. Safko. (2002), Classical Mechanics, Addison-Wesley Longman, p.638, [ISBN: 978-0201657029].

Daniel Kleppner, Robert J. Kolenkow, Robert Kolenkow. (1973), An Introduction to Mechanics, McGraw-Hill Science, Engineering & Mathematics, p.546, [ISBN: 978-0070350489].

APPROVED

MATH 3834: Modern Algebra With Applications

Module Details		
Module Code:	MATH 3834	
Module Long Title:	Modern Algebra With Applications APPROVED	
Banner Title:	Modern Algebra With Applictns	
Version:	1	
Indicative NFQ level:	Level 7	
Valid From:	Jan 2019 (January 2019)	
Language of Instruction:	English	
ECTS Credits::	7.5	
ISCED Code:	0541 - Mathematics	
Current Coordinator::	MILENA VENKOVA-MCGARRAGHY	
Module Coordinators:	MILENA VENKOVA-MCGARRAGHY (07 January 2020 to)	
School Responsible:	School of Mathematical Sciences (CC)	
Campus:	City Campus	
Module Overview	This module introduces the student to concepts in Number Theory and Group Theory and explores their applications in the areas of Coding Theory and Cryptology.	
Indicative Syllabus	Number Theory, the integers modulo n and Applications to Coding Theory. The integers, division algorithm, primes, Euclidean Algorithm, Equivalence relations, the integers modulo n and modular arithmetic. Solutions of linear congruences, Fermat's Little Theorem, The Chinese Remainder Theorem, applications in error correcting codes. Matrix Algebras, Vector spaces over finite fields and applications in Cryptography The concepts of matrix algebra, vector spaces over the integers modulo p, the basics of cryptography, some simple cryptosystems, shift and affine transformations, enciphering matrices, Public key encryption. Euler's phi function and Euler's theorem, the RSA encryption system. Introduction to Algebraic Coding Theory Basic definitions and examples. Linear codes, Hamming distance, generator matrix, parity check matrix decoding, coset decoding.	
Learning and Teaching Methods	Lectures supported by tutorials.	

Learning Outcomes	Learning Outcomes				
Upon successful com	Upon successful completion of this module the learner will be able to				
#					
MLO1	demonstrate an un	nderstanding of the integers modulo n and their a	pplications in Coding Theory and Cryptology		
MLO2	to solve systems o	of linear congruences,			
MLO3	demonstrate an un	nderstanding of the concepts of vector spaces over	er a finite field,		
MLO4	demonstrate an un	nderstanding of the basic concepts of algebraic co	oding theory,		
MLO5	identify if a given c	code is a linear code,			
MLO6	demonstrate an un	nderstanding of the Hamming distance and its rele	evance to the error correction and detection capabilities of a co	ode,	
MLO7	encode and decod	le using generator and parity check matrices and	coset decoding.		
Requisites					
Assessment Thresh	Assessment Threshold 35% on final exam				
Module Conten	t & Assessmer	nt			
Assessment Breakd	own			%	
Formal Examination	al Examination 70.00%				
Other Assessment(s)	nt(s) 30.00%				
Assessments					
Formal Examination	I				
Assessment Type		Written Examination	% of Total Mark for Module	70	
Indicative Week		Week 28	Learning Outcomes	1,2,3,4,5,6,7	
Assessment Thresh	old:	35	Assessment Role	Individual	
Assessment Authen	ticity	Not Online	Pass/Fail	No	
	Assessment Description End of semester written examination.				
Other Assessment(s)					
Assessment Type		In Class Test	% of Total Mark for Module	30	
Indicative Week		See Student Handbook	Learning Outcomes	1,2,3	
Assessment Threshold: None Assessment Role		Assessment Role	Individual		
Assessment Authen	ticity	Not Online	Pass/Fail	No	
Assessment Descrip n/a	Assessment Description /a				

Module MATH 3834 - Modern Algebra With Applications v1 (Year/Cycle:1 / Semester:Semester 2 / Delivery Type:Mandatory)

Full Time hours per semester		
Activity Type		Duration (Hours)
Lecture		39
Self Directed		111
	Hours (up to 100 for 5 ECTS credits)	150.00
Recommended Reading List		
Recommended Book Resources		
Joseph Gallian. (2012), Contemporary Abstract Algebra, Cengage Learning, p.656, [ISBN: 978-1133599708].		
Supplementary Book Resources		

APPROVED

MATH 3838: Statistics II: Statistical Modellling

Module Details		
Module Code:	MATH 3838	
Module Long Title:	Statistics II: Statistical Modellling APPROVED	
Banner Title:	MATH 3838 Statistics II: Stat	
Version:	1	
Indicative NFQ level:	Level 7	
Valid From:	Jan 2019 (January 2019)	
Language of Instruction:	English	
ECTS Credits::	7.5	
ISCED Code:	0542 - Statistics	
Current Coordinator::	JOE CONDON	
Module Coordinators:	JOE CONDON (23 January 2020 to)	
School Responsible:	School of Mathematical Sciences (CC)	
Campus:	City Campus	
Module Overview		

This module expands on the material in MATH2837 to include methods of finding the moments of random variables including moment generating functions. Jointly distributed random variables are introduced and covariance and correlation are examined. The likelihood and method of moments based estimation methods are compared and statistical inference via the likelihood is introduced in single and multiple parameter settings. Linear statistical modelling including simple and multiple regression and ANOVA are explored, including the use of up-to-date software for model fitting.

Indicative Syllabus

Moments & generating functions

Properties of expectation and variance. Moments of the standard discrete and continuous probability distributions. Moment generating functions; properties and uses.

Jointly Distributed Random Variables

Jointly distributed discrete and continuous random variables. The expected value of functions of two or more random variables. Independence. Covariance and correlation.

Likelihood based methods

Likelihood based model formulation and fitting. Likelihood estimation compared to the method of moments. Likelihood inference for single and multiple parameter cases. Wald based hypothesis testing and confidence intervals. Likelihood ratio tests and the chi-squared distribution.

Linear statistical models : special distributions; t and F. simple and multiple regression models. ANOVA.

Learning and Teaching Methods Lectures supported by tutorials and computer lab. sessions. Module MATH 3838 - Statistics II: Statistical Modellling v1 (Year/Cycle: 1 / Semester: Semester 2 / Delivery Type:Mandatory)

Learning Outcomes					
Upon successful com	Upon successful completion of this module the learner will be able to				
#					
MLO1	Define and find the expectation and variance of simple and standard discrete/continuous random variables and linear transformations of random variables. Be able to find moment generating functions of random variables, understand the properties of MGFs and find moments using MGFs.				
MLO2	Understand jointly distributed random variables (mass and density functions), covariance and correlation.				
MLO3	Use the method of moments to estimate population parameters. Apply likelihood based approaches to model formulation, estimation and inference in single and multiple parameter cases. Perform Wald based tests of hypotheses and Cls for single parameters and likelihood ratio tests for multiple parameters.				
MLO4	Formulate, fit and report the results of linear statistical models with one and more that one predictor, including regression models and ANOVA. Perform t and F based hypothesis tests in the context of such models.				
MLO5	Use a major statistical software package for data analysis (e.g. R or equivalent), applying techniques covered in the module.				
Requisites					
Assessment Threshold					

End of semester exam: 35%

Module Content & Assessment			
Assessment Breakdown			%
Formal Examination			70.00%
Other Assessment(s)			30.00%
Assessments Formal Examination			
Assessment Type	Written Examination	% of Total Mark for Module	70
Indicative Week	Week 15	Learning Outcomes	1,2,3,4,5
Assessment Threshold:	35	Assessment Role	Individual
Assessment Authenticity	Not Online	Pass/Fail	No
Assessment Description n/a			
Other Assessment(s)			
Assessment Type	In Class Test	% of Total Mark for Module	30
Indicative Week	Week 7	Learning Outcomes	1,2,3,5
Assessment Threshold:	None	Assessment Role	Individual
Assessment Authenticity	Not Online	Pass/Fail	No
Assessment Description			
n/a			

Page 27 of 48

Module MATH 3838 - Statistics II: Statistical Modellling v1 (Year/Cycle:1 / Semester:Semester 2 / Delivery Type:Mandatory)

Module Activity	
Full Time hours per semester	
Activity Type	Duration (Hours)
Lecture	39
Self Directed	111
Hours (up to 100 for 5 ECTS credits)	150.00

Module MATH 3831 - Mathematical Methods 1 v1 (Year/Cycle:2 / Semester:Semester 1 / Delivery Type:Mandatory)

APPROVED

MATH 3831: Mathematical Methods 1

Module Details	
Module Code:	MATH 3831
Module Long Title:	Mathematical Methods 1 APPROVED
Banner Title:	Mathematical Methods 1
Version:	1
Indicative NFQ level:	Level 7
Valid From:	Jan 2020 (January 2020)
Language of Instruction:	English
ECTS Credits::	7.5
ISCED Code:	0541 - Mathematics
Current Coordinator::	Nicole Beisiegel
Module Coordinators:	BRENDAN REDMOND (07 January 2020 to 06 December 2021) Nicole Beisiegel (06 December 2021 to)
School Responsible:	School of Mathematical Sciences (CC)
Campus:	City Campus
Module Overview	This module introduces mathematical techniques such as integral transforms and Fourier series, as well as some of their applications to solving differential equations and calculating definite integrals and infinite series. It also introduces differentiation of scalar and vector functions of two or more variables and calculating maximum and minimum points of real-valued functions subject to constraints using the method of Lagrange multipliers.
Indicative Syllabus	 F ourier series (periodic functions, definition and examples of Fourier series, even and odd functions, Parseval's theorem and applications) The Dirac delta and Heaviside step functions Laplace transforms (definition, properties, applications to solving ordinary differential equations and evaluating definite integrals) Differentiable functions of several variables (t he total derivative as a linear mapping, the implicit and inverse function theorems) Constrained extrema and Lagrange multipliers Directional derivatives and gradients Vector fields, divergence and curl; vector calculus identities
Learning and Teaching Methods	Lectures, supported by tutorials.

Rationale for Change :	Changes made in accordance with revised module descriptor.	
------------------------	--	--

Learning Outcomes	Learning Outcomes							
Upon successful com	Upon successful completion of this module the learner will be able to							
#								
MLO1	Construct Fourier	series expansio	ns for periodic functions					
MLO2	Use Parseval's th	eorem to evaluat	te infinite series					
MLO3	Calculate Laplace	e transforms and	inverse transforms of elementary	functions, using the de	finition and transform tables			
MLO4	Use the properties	s of the Laplace	transform					
MLO5	Use Laplace trans	sforms to solve li	near ordinary differential equation	S				
MLO6	Calculate partial c	derivatives, direct	tional derivatives and gradients of	scalar functions of sev	eral variables			
MLO7	Find minimum and	d maximum poin	ts of multi-variable functions subje	ect to constraints using	Lagrange multipliers			
MLO8	Apply differential	operators such a	is grad, div and curl on vector fund	ctions				
Requisites								
Assessment Thresh	nold	35% on end o	f module written exam.					
Module Conten	it & Assessme	nt						
Assessment Breako	down						%	
Formal Examination							70.00%	
Other Assessment(s))						30.00%	
Assessments								
Formal Examination	n							
Assessment Type			Written Examination		% of Total Mark for Module		70	
Indicative Week			Week 28		Learning Outcomes		1,2,3,4,5,6,7,8	
Assessment Thres	hold:		35		Assessment Role		Individual	
Assessment Authe	•		Not Online		Pass/Fail		No	
	Assessment Description End of semester examination							
Other Assessment(s)								
Assessment Type In Class Test % of Total Mark for Module 30								
Indicative Week	Adicative Week 1 Learning Outcomes 1,2,3,4							
Assessment Threshold: None Assessment Role Individual								
Assessment Authenticity Not Online Pass/Fail				No				
	Assessment Description Continuous Assessment							

Module MATH 3831 - Mathematical Methods 1 v1 (Year/Cycle:2 / Semester:Semester 1 / Delivery Type:Mandatory)

Module Activity	
Full Time hours per semester	
Activity Type	Duration (Hours)
Lecture	39
Self Directed	111
Hours (up to 100 for 5 ECTS credits)	150.00

Module MATH 3836 - Numerical Methods 2 v1 (Year/Cycle:2 / Semester:Semester 1 / Delivery Type:Mandatory)

APPROVED

MATH 3836: Numerical Methods 2

Module Details	
Module Code:	MATH 3836
Module Long Title:	Numerical Methods 2 APPROVED
Banner Title:	Numerical Methods 2
Version:	1
Indicative NFQ level:	Level 7
Valid From:	Jan 2019 (January 2019)
Language of Instruction:	English
ECTS Credits::	7.5
ISCED Code:	0541 - Mathematics
Current Coordinator::	MILENA VENKOVA-MCGARRAGHY
Module Coordinators:	MILENA VENKOVA-MCGARRAGHY (14 December 2021 to)
School Responsible:	School of Mathematical Sciences (CC)
Campus:	City Campus
Module Overview	This module introduces the learner to methods for estimating eigenvalues and eigenvectors and to the theory of interpolation (using Lagrange / Newton polynomials and cubic splines) and approximation.
Indicative Syllabus	 Numerical methods for finding eigenvalues and eigenvectors: The Gershgorin circle theorem; The power and inverse power method; The QR factorisation method; Interpolation and approximation methods: The Lagrange and Newton forms of the interpolation polynomial; Interpolation errors; Chebyshev polynomials and interpolation using their roots; Cubic Spline interpolation (natural, clamped, etc.); Approximation methods: Linear least squares approximation and applications to exponential models; Taylor series and error terms; Economization of power series using properties of Chebyshev polynomials. Padé approximation.
Learning and Teaching Methods	Lectures supported by problem-solving tutorials and laboratory sessions using mathematical software packages.
Indicative Syllabus	
1. n/a 1.1) n/a	

Learning Out	Learning Outcomes					
Upon success	Upon successful completion of this module the learner will be able to					
#						
MLO1	Recognise when n	merical methods can be employed for solving mathematical problems				
MLO2	Use numerical met	nods for approximating eigenvalues and eigenvectors				
MLO3	Construct Lagrang	and Newton interpolation polynomials and cubic splines				
MLO4	Use Chebyshev po	ynomials for interpolation and approximation				
MLO5	Use least squares	and Taylor series for approximating functions				
MLO6	Use mathematical	oftware to complement and apply the topics encountered				
Requisites						
Assessment Threshold Exam 35%						
Module Content & Assessment						
Assessment	Assessment Breakdown %					
Formal Exami	Formal Examination 70.00%					
Other Assess	ther Assessment(s) 30.00%					

Assessments

Formal Examination				
Assessment Type	Written Examination	% of Total Mark for Module	70	
Indicative Week	Week 15	Learning Outcomes	1,2,3,4,5	
Assessment Threshold:	35	Assessment Role	Individual	
Assessment Authenticity	Not Online	Pass/Fail	No	
Assessment Description n/a				
Other Assessment(s)				
Assessment Type	In Class Test	% of Total Mark for Module	30	
Indicative Week	Week 7	Learning Outcomes	1,2,3,6	
Assessment Threshold:	None	Assessment Role	Individual	
Assessment Authenticity	Not Online	Pass/Fail	No	

Module MATH 3836 - Numerical Methods 2 v1 (Year/Cycle:2 / Semester:Semester 1 / Delivery Type:Mandatory)

Module Activity	
Full Time hours per semester	
Activity Type	Duration (Hours)
Lecture	39
Self Directed	111
Hours (up to 100 f	for 5 ECTS credits) 150.00
Recommended Reading List	
Recommended Book Resources	
B. Bradie. (2006), A Friendly Introduction to Numerical Analysis, Pearson Education.	
Burden R.J. & Faires J.D (2004), , Numerical Analysis, Brooks Cole.	
Supplementary Book Resources	
Gerald, C.F., Wheatley, P.O (2003), Applied Numerical Analysis, Addison Wesley.	
Sauer, T (2006), Numerical Analysis, Pearson Education.	

Module MATH 3835 - Numerical Analysis for Differential Equations v1 (Year/Cycle:2 / Semester:Semester 2 / Delivery Type:Mandatory)

APPROVED MATH 3835: Numerical Analysis for Differential Equations

Module Details	
Module Code:	MATH 3835
Module Long Title:	Numerical Analysis for Differential Equations APPROVED
Banner Title:	Num Analysis for Dif Equations
Version:	1
Indicative NFQ level:	Level 7
Valid From:	Jan 2019 (January 2019)
Language of Instruction:	English
ECTS Credits::	7.5
ISCED Code:	0541 - Mathematics
Current Coordinator::	MILENA VENKOVA-MCGARRAGHY
Module Coordinators:	MILENA VENKOVA-MCGARRAGHY (15 December 2021 to)
School Responsible:	School of Mathematical Sciences (CC)
Campus:	City Campus
Module Overview	The learner is introduced to numerical methods for approximating derivatives and integrals, discretizing initial value and boundary value problems for ordinary differential equations and estimating their solutions.
Indicative Syllabus	 Numerical Differentiation and Integration. Finite difference formulas for derivatives; Newton-Cotes integration formulas and error terms (Simpson's, trapezoidal, midpoint); Composite integration formulas; Rates of convergence for composite rules and numerical verification; Gaussian quadrature formulas Initial value problems for ordinary differential equations. The Euler and modified Euler method; Runge-Kutta and multi-step methods; Convergence and stability analysis. Boundary value problems for ordinary differential equations. Techniques for solving two-point boundary value problems for linear second order ordinary differential equations with Dirichlet and Neumann boundary conditions: Finite difference methods and shooting methods

Learning and Teaching Methods	Lectures supported by problem-solving tutorials and laboratory sessions using mathematical software packages.	
----------------------------------	---	--

Learning Outcom	Learning Outcomes						
Upon successful c	Upon successful completion of this module the learner will be able to						
#							
MLO1	Recognise when n	umerical methods can be employed for solving mathematical problems.					
MLO2	Approximate deriv	atives using forward, central and backward difference formulas.					
MLO3	Approximate integ	rals using standard and composite Newton-Cotes rules and calculating error bounds					
MLO4	Derive and apply of	uadrature methods for approximating integrals					
MLO5	Solve initial value	problems in ordinary differential equations					
MLO6	Solve boundary va	lue problems in ordinary differential equations					
MLO7	Use mathematical	software to complement and apply the topics encountered					
Requisites							
Assessment Thre	eshold	Formal examination 35%					
Module Conte	ent & Assessmer	nt					
Assessment Brea	akdown		%				
Formal Examination	n		70.00%				
Other Assessment	Other Assessment(s) 30.00%						
Derogations from	the General Assessn	nent Regulations					
N/A	N/A						
ssessments							

Assessments

Formal Examination				
Assessment Type	Written Examination	% of Total Mark for Module	70	
Indicative Week	Week 25	Learning Outcomes	1,2,3,4,5,6	
Assessment Threshold:	35	Assessment Role	Individual	
Assessment Authenticity	Not Online	Pass/Fail	No	
Assessment Description n/a				
Other Assessment(s)				
Assessment Type	In Class Test	% of Total Mark for Module	30	
Indicative Week	Week 22	Learning Outcomes	1,2,3,7	
Assessment Threshold:	None	Assessment Role	Individual	
Assessment Authenticity	Not Online	Pass/Fail	No	
Assessment Description n/a				

Module MATH 3835 - Numerical Analysis for Differential Equations v1 (Year/Cycle:2 / Semester:Semester 2 / Delivery Type:Mandatory)

Module Activity	
Part Time hours per semester	
Activity Type	Duration (Hours)
Lecture	39
Self Directed	111
Hours (up to 100 for 5 ECTS cre	dits) 150.00
Recommended Reading List	
Recommended Book Resources	
Bradie, B. (2006), A Friendly Introduction to Numerical Analysis, Pearson Education.	
Burden R.J. & Faires J.D. (2004), Numerical Analysis, Brooks Cole.	
Supplementary Book Resources	
Sauer, T. (2006), Numerical Analysis, Pearson Education.	
Gerald, C.F., Wheatley, P.O (2003), Applied Numerical Analysis,, Addison Wesley.	

Module MATH 3832 - Vector Calculus v1 (Year/Cycle:2 / Semester:Semester 2 / Delivery Type:Mandatory)

APPROVED MATH 3832: Vector Calculus

Module Details	
Module Code:	MATH 3832
Module Long Title:	Vector Calculus APPROVED
Banner Title:	Vector Calculus
Version: Indicative NFQ level:	1 Level 7
Valid From:	
Language of Instruction:	Jan 2020 (January 2020) English
ECTS Credits::	7.5
ISCED Code:	0541 - Mathematics
Current Coordinator::	DANA MACKEY
Module Coordinators:	DANA MACKEY (07 January 2020 to)
School Responsible:	School of Mathematical Sciences (CC)
Campus:	City Campus
Module Overview	This module introduces techniques for integrating multi-variable functions over curves and surfaces as well as open subsets of two and three-dimensional space. The relationship between these integrals is studied, through the integral theorems of Green, Stokes and Gauss. A wide range of applications of integration, such as finding areas and volumes, circulation and flux of vector fields, etc. is also introduced.
Indicative Syllabus	Geometry of curves in two and three dimensions, parametrizations; Line integrals; path independence and conservative fields; Double and triple integrals; changing the order of integration; Green's theorem and applications; General curvilinear systems; change of variables, Jacobian, polar coordinates; Parametrized surfaces in R^3; surface area and surface integrals; Stokes' theorem and Gauss' theorem.
Learning and Teaching	Lectures, supported by tutorials.

Μ	ethods	

Learning Outcomes					
Upon successful completion of this module the learner will be able to					
#					
MLO1	Parametrise curve	es in 2 and 3 dimensions and calculate line integrals;			
MLO2	Evaluate double in	ntegrals and triple integrals and use them for calculating areas and volumes			
MLO3	Formulate and sol	Formulate and solve integration problems in polar, or general curvilinear, coordinate systems;			
MLO4	Apply Green's The	Apply Green's Theorem;			
MLO5	Parametrise surfa	Parametrise surfaces and calculate surface areas and surface integrals;			
MLO6	Apply the theorem	Apply the theorems of Stokes and Gauss;			
MLO7	Develop advanced	Develop advanced computational skills and an intuitive understanding of integration.			
Requisites	Requisites				
Assessment Threshold 35% on end-of-module written exam					

35% on end-of-module written exam

Module Content & Assessment				
Assessment Breakdown	%			
Formal Examination	70.00%			
Other Assessment(s)	30.00%			

Assessments

Formal Examination				
Assessment Type	Written Examination	% of Total Mark for Module	70	
Indicative Week	Week 28	Learning Outcomes	1,2,3,4,5,6,7	
Assessment Threshold:	35	Assessment Role	Individual	
Assessment Authenticity	Not Online	Pass/Fail	No	
Assessment Description n/a				
Other Assessment(s)				
Other Assessment(s) Assessment Type	In Class Test	% of Total Mark for Module	30	
	In Class Test See Student Handbook	% of Total Mark for Module Learning Outcomes	30 1,2,3	
Assessment Type				
Assessment Type Indicative Week	See Student Handbook	Learning Outcomes	1,2,3	

Module MATH 3832 - Vector Calculus v1 (Year/Cycle:2 / Semester:Semester 2 / Delivery Type:Mandatory)

Module Activity				
Full Time hours per semester				
Activity Type	Duration (Hours)			
Lecture	39			
Self Directed	111			
Hours (up to 100 for 5 ECTS credits)	150.00			
Recommended Reading List				
Recommended Book Resources				
Sean Dineen. (2014), Multivariate Calculus and Geometry, Springer Undergraduate Mathematics Series.				
Supplementary Book Resources				
Robert C Wrede, Murray Spiegel. (2002), Advanced Calculus, Schaum's Outline Series.				
Dominic Jordan, Peter Smith. (2003), Mathematical Techniques: An Introduction for the Engineering, Physical, and Mathematical Sciences, Oxford University Press.				