

APPROVED

MATH 4851: Financial Mathematics 1

Module Details		
Module Code:	MATH 4851	
Module Long Title:	Financial Mathematics 1 APPROVED	
Banner Title:	Financial Mathematics 1	
Version:	1	
Indicative NFQ level:	Level 8	
Valid From:	Sept 2018 (September 2018)	
ECTS Credits::	7.5	
ISCED Code:	0541 - Mathematics	
Current Coordinator::	STEPHEN O SULLIVAN	
Module Coordinators:	 SUSAN LAZARUS (19 January 2022 to 20 January 2022) STEPHEN O SULLIVAN (20 January 2022 to) 	
School Responsible:	School of Mathematical Sciences (CC)	
Campus:	City Campus	
Module Overview This module introduces the learner to the mathematics of pricing, construction and hedging of derivative securities. Discrete-time models form the found of our treatment with concepts such as change-of-measure and martingales introduced within this framework. Option pricing will be considered from the perspectives of replication and risk-neutral expectation. Parity relationships and binomial pricing methods will be explored for European and American options. Multi-step binomial models will be considered for standard and exotic options. A discrete treatment of Monte-Carlo methods to path-independe and path-dependent options will be considered.		
	Expected value versus arbitrage pricing Expected value versus arbitrage pricing, time value of money Binomial trees Binomial model derivative synthesis, replication, Arrow-Debreu securities, risk-neutral measure	

Indicative Syllabus	Martingales, change-of-measure, representation		
	Stochastic processes, filtrations, claims, conditional expectation, martingales, binomial representation theorem		
	Binomial option pricing		
	Vanilla and exotic option pricing on multi-step binomial lattices, pricing inequalities		
	Discrete time Monte-Carlo pricing		
	Martingale measure pricing, confidence intervals for option prices		
Learning and Teaching Methods	Lectures supported by problem-solving sessions and the use of mathematical software packages where applicable		

Module MATH 4851 - Financial Mathematics 1 v1 (Year/Cycle:1 / Semester:Semester 1 / Delivery Type:Elective)

Learning Outcomes		
Upon success	ful completion of this module the learner will be able to	
#		
MLO1	develop effective and efficient self-directed study skills	
MLO2	self-evaluate learning needs and manage learning tasks independently	
MLO3	reflect on unfamiliar concepts and successfully contextualize within personal experience – in particular, concepts including rational markets, arbitrage-free option pricing, and risk-neutral probability measures	
MLO4	demonstrate the application of various concepts of hedging and pricing by arbitrage in a discrete time framework to problems	
MLO5	price vanilla and exotic options within multi-step recombinant binomial models	
MLO6	apply Monte-Carlo techniques with confidence interval analysis to discrete-time path-dependent and path-independent option pricing models	

Requisites

Module Content & Assessment		
Assessment Breakdown	%	
Formal Examination	75.00%	
Other Assessment(s)	25.00%	

Assessments

Formal Examination				
Assessment Type	Written Examination	% of Total Mark for Module	75	
Indicative Week	Week 14	Learning Outcomes	1,2,3,4,5,6	
Assessment Threshold:	35	Assessment Role	Individual	
Assessment Authenticity	Not Online	Pass/Fail	No	
Assessment Description n/a				
Other Assessment(s)				
Other Assessment(s) Assessment Type	Practical Assignment	% of Total Mark for Module	25	
Other Assessment(s) Assessment Type Indicative Week	Practical Assignment Week 8	% of Total Mark for Module Learning Outcomes	25 1,2,3,4,5,6	
Other Assessment(s) Assessment Type Indicative Week Assessment Threshold:	Practical Assignment Week 8 None	% of Total Mark for Module Learning Outcomes Assessment Role	25 1,2,3,4,5,6 Individual	
Other Assessment(s) Assessment Type Indicative Week Assessment Threshold: Assessment Authenticity	Practical Assignment Week 8 None Not Online	% of Total Mark for Module Learning Outcomes Assessment Role Pass/Fail	25 1,2,3,4,5,6 Individual No	

Module MATH 4851 - Financial Mathematics 1 v1 (Year/Cycle:1 / Semester:Semester 1 / Delivery Type:Elective)

Module Activity		
Part Time hours per semester		
Activity Type	Duration (Hours)	
Lecture	39	
Self Directed	111	
Hours (up to 100 for 5 ECTS credits)	150.00	

Recommended Reading List

Recommended Book Resources

JOHN. HULL. (2021), Options, Futures, and Other Derivatives, Global Edition, Pearson, [ISBN: 1292410655].

Supplementary Book Resources

Ali Hirsa, Salih N. Neftci. An Introduction to the Mathematics of Financial Derivatives, [ISBN: 012384682X].

Fima C Klebaner. (2005), Introduction To Stochastic Calculus With Applications (2nd Edition), World Scientific Publishing Company, p.432, [ISBN: 9781848168220].

Steven Shreve. (2005), Stochastic Calculus for Finance I, Springer Science & Business Media, p.187, [ISBN: 978-0387249681].

Steven E. Shreve. (2004), Stochastic Calculus for Finance II, Springer Science & Business Media, p.550, [ISBN: 978-0387401010].

Paul Wilmott, Susan Howson, Sam Howison, Wilmott-Howison-Dewynne ..., Jeff Dewynne. (1995), The Mathematics of Financial Derivatives, Cambridge University Press, p.317, [ISBN: 978-0521497893].

Module Details		
Module Code:	MATH 4855	
Module Long Title:	Fluid Mechanics 1 APPROVED	
Banner Title:	Fluid Mechanics 1	
Version:	1	
Indicative NFQ level:	Level 8	
Valid From:	Sept 2023 (September 2023)	
Language of Instruction:	English	
ECTS Credits::	7.5	
ISCED Code:	0541 - Mathematics	
Current Coordinator::	ROSSEN IVANOV	
Module Coordinators:	ROSSEN IVANOV (10 February 2023 to)	
School Responsible:	School of Mathematics & Statistics	
Campus:	City Campus	
Module Overview	This module presents the fundamental and more advanced principles of fluid mechanics and illustrates them by application to a variety of problems of scientific interest. The fundamental aspects of classical fluid mechanics will be investigated and techniques will be provided for solving specific classes of fluid problems. Preliminary concepts such pressure, mass, momentum, energy, inviscid fluids and dimensional reasoning will be introduced. Stresses and strains on a fluid element will be analysed. Bernoulli's equation and Euler's equation will be introduced. Flow kinematics, such as the acceleration of a fluid particle and flow lines will be analysed and accompanied with examples. The equation of conservation of mass will be derived. Complex variable techniques will be used to solve fluid flow problems. Water waves, including surface gravity waves, sinusoidal waves on deep water, and particle paths for travelling waves will be presented.	
Learning and Teaching Methods	Lectures are primarily used to impart module content to the learner. Problem solving sessions and tutorials to support learners and are designed to encourage learners to work both individually and in groups.	
Indicative Syllabus		
1. Preliminaries 1.1) Properties of fluids, the continuum model, pressure, mass, momentum, density, viscosity, energy, inviscid fluids, stream functions, velocity potentials, compressibility and incompressibility, irrotationalflows, dimensional reasoning.		
2. Flow Kinematics 2.1) Lagrangian and Eulerian descriptions, material derivative, acceleration of a fluid particle, streamlines, pathlines, streaklines, vorticity.		
3. Fundamental Equations 3.1) Conservation of mass equation, the continuity equation, Bernoulli's equation, momentum and energyequations. Euler's equations and the Navier-Stokes equations.		

4. Ideal Fluid Flow4.1) Complex variable techniques, complex potential and complex velocity, aerofoil theory.

5. Water Waves5.1) Surface gravity waves, sinusoidal waves on deep water, particle paths for travelling waves on deep water.

Learning Outcomes		
Upon successful completion of this module the learner will be able to		
#		
MLO1	Describe and explain the phenomena which are associated with the various properties of fluids.	
MLO2	Analyse flow kinematics of a fluid.	
MLO3	Compute streamlines, pathlines and streaklines for particular flows.	
MLO4	Derive the continuity equation. Interpret stream functions and velocity potentials.	
MLO5	Analyse ideal fluid flow and use complex variable techniques to solve fluid flow problems.	
MLO6	Formulate the equations governing the motion of surface gravity waves and find particle paths for travelling waves.	

Requisites

Module Content & Assessment		
Assessment Breakdown	%	
Formal Examination	75.00%	
Other Assessment(s) 25.00%		

Assessments

Formal Examination			
Assessment Type	Written Examination	% of Total Mark for Module	75
Indicative Week	Week 14	Learning Outcomes	1,2,3,4,5,6
Assessment Threshold:	35	Assessment Role	Individual
Assessment Authenticity	Not Online	Pass/Fail	No
Assessment Description End of module examination.			
Other Assessment(s)			
Other Assessment(s) Assessment Type	Problem-Based Assignment	% of Total Mark for Module	25
Other Assessment(s) Assessment Type Indicative Week	Problem-Based Assignment See Student Handbook	% of Total Mark for Module Learning Outcomes	25 1,2,3,4
Other Assessment(s) Assessment Type Indicative Week Assessment Threshold:	Problem-Based Assignment See Student Handbook None	% of Total Mark for Module Learning Outcomes Assessment Role	25 1,2,3,4 Individual
Other Assessment(s) Assessment Type Indicative Week Assessment Threshold: Assessment Authenticity	Problem-Based Assignment See Student Handbook None Not Online	% of Total Mark for Module Learning Outcomes Assessment Role Pass/Fail	25 1,2,3,4 Individual No

Module MATH 4855 - Fluid Mechanics 1 v1 (Year/Cycle:1 / Semester:Semester 1 / Delivery Type:Elective)

Module Activity	
Full Time hours per semester	
Activity Type	Duration (Hours)
Lecture	39
Self Directed	111
Hours (up to 100 for 5 ECTS credits)	150.00
Part Time hours per semester	
Activity Type	Duration (Hours)
Lecture	39
Self Directed	111
Hours (up to 100 for 5 ECTS credits)	150.00
Recommended Reading List	
Recommended Book Resources	
I.G. Currie. (2012), Fundamental Mechanics of Fluids, Fourth Edition, CRC Press, p.607, [ISBN: 9781439874608].	
Frank M. White. (2021), Fluid Mechanics, 9th edition. McGraw Hill, [ISBN: 9781260258318].	
Supplementary Book Resources	
Yunus A. Çengel, John M. Cimbala. (2019), Fluid Mechanics: Fundamentals and Applications, 4th edition. 15 chapters, McGraw Hill, [ISBN: 97898131578	80].
D. J. Acheson. (1990), Elementary Fluid Dynamics, Oxford University Press, p.408, [ISBN: 9780198596790].	

Hermann Schlichting, Klaus Gersten. (2016), Boundary-Layer Theory, 9-th edition. Springer, p.782, [ISBN: 9783662529171].

APPROVED MATH 4845: Group Theory

Module Details		
Module Code:	MATH 4845	
Module Long Title:	Group Theory APPROVED	
Banner Title:	Group Theory	
Version:	1	
Indicative NFQ level:	Level 8	
Valid From:	Sept 2020 (September 2020)	
Language of Instruction:	English	
ECTS Credits::	7.5	
ISCED Code:	0541 - Mathematics	
Current Coordinator::	SUSAN LAZARUS	
Module Coordinators:	SUSAN LAZARUS (24 November 2021 to)	
School Responsible:	School of Mathematical Sciences (CC)	
Campus:	City Campus	
Module Overview	The module begins with a review of important properties of the integers. It continues to investigate the algebraic systems of groups.	
	Preliminaries : Integers, Equivalence Relations, Congruences.	
	Group Theory	
	Historical development of groups and groups of transformations.	
	Examples of groups, Dihedral groups, Symmetric groups, cyclic groups.	
Indicative Syllabus	Order of groups and the order of elements in a group.	

	Group homomorphisms and isomorphisms.
	Cayley's theorem and left regular representation of a group.
	Cosets and Lagrange's theorem.
	Normal subgroups, Quotient groups and the Homomorphism Theorems.
	Direct product of Groups.
	Group actions on a set.
Learning and Teaching Methods	Lectures supported by tutorials

Ecanning Outcomes				
Upon successful con	pletion of this module the learner	r will be able to		
#				
MLO1	develop effective and efficient s	self-directed study skills		
MLO2	self-evaluate learning needs an	d manage learning tasks independently		
MLO3	explain the group axioms and ic	dentify whether or not a given system is a	a group	
MLO4	describe and explain the many	examples of groups discussed in class		
MLO5	identify whether or not given su	bsets are subgroups of a given group		
MLO6	explain the concept of the order	r of a group and the order of a group eler	nent	
MLO7	identify cyclic subgroups and cy	/clic groups		
MLO8	identify whether or not a subgro	oup is a normal subgroup of a given grou	p	
MLO9	explain the concept of cosets of	f a subgroup		
MLO10	prove consequences of Lagran	ge's Theorem		
MLO11	determine if mappings between	groups are homomorphisms and/or ison	norphisms and determine the kernel of a homomorphism	
MLO12	construct factor groups			
MLO13	describe the relationship betwee	en normal subgroups, homomorphisms a	and factor groups	
Requisites				
Assessment Thresh	There is a t	threshold of 35% on the written final example	mination	
Module Conten	t & Assessment			
Assessment Break	lown			
Formal Examination				%
-				% 75.00%
Other Assessment(s)				% 75.00% 25.00%
Other Assessment(s) Assessments				% 75.00% 25.00%
Other Assessment(s) Assessments Formal Examination	1.			% 75.00% 25.00%
Other Assessment(s) Assessments Formal Examination Assessment Type	1	Written Examination	% of Total Mark for Module	% 75.00% 25.00% 75
Other Assessment(s) Assessments Formal Examination Assessment Type Indicative Week	1	Written Examination Week 14	% of Total Mark for Module Learning Outcomes	% 75.00% 25.00% 75 1,2,3,4,5,6,7,8,9,10,11,12,13
Other Assessment(s) Assessments Formal Examination Assessment Type Indicative Week Assessment Thresh	nold:	Written Examination Week 14 35	% of Total Mark for Module Learning Outcomes Assessment Role	% 75.00% 25.00% 75 1,2,3,4,5,6,7,8,9,10,11,12,13 Individual
Other Assessment(s) Assessments Formal Examination Assessment Type Indicative Week Assessment Thresh Assessment Authen	nold: nticity	Written Examination Week 14 35 Not Online	% of Total Mark for Module Learning Outcomes Assessment Role Pass/Fail	% 75.00% 25.00% 75 1,2,3,4,5,6,7,8,9,10,11,12,13 Individual No
Other Assessment(s) Assessments Formal Examination Assessment Type Indicative Week Assessment Thresh Assessment Auther Assessment Descri n/a	nold: nticity ption	Written Examination Week 14 35 Not Online	% of Total Mark for Module Learning Outcomes Assessment Role Pass/Fail	% 75.00% 25.00% 75 1,2,3,4,5,6,7,8,9,10,11,12,13 Individual No
Other Assessment(s) Assessments Formal Examination Assessment Type Indicative Week Assessment Thresh Assessment Auther Assessment Descri n/a Other Assessment(s)	n Iold: Inticity ption	Written Examination Week 14 35 Not Online	% of Total Mark for Module Learning Outcomes Assessment Role Pass/Fail	% 75.00% 25.00% 75 1,2,3,4,5,6,7,8,9,10,11,12,13 Individual No
Other Assessment(s) Assessments Formal Examination Assessment Type Indicative Week Assessment Thresh Assessment Auther Assessment Descrin/a Other Assessment(s)	n Nold: Inticity ption	Written Examination Week 14 35 Not Online In Class Test	% of Total Mark for Module Learning Outcomes Assessment Role Pass/Fail % of Total Mark for Module	% 75.00% 25.00% 75 1,2,3,4,5,6,7,8,9,10,11,12,13 Individual No 10
Other Assessment(s) Assessments Formal Examination Assessment Type Indicative Week Assessment Thresh Assessment Auther Assessment Descrin/a Other Assessment(s) Assessment Type Indicative Week	nold: nticity ption s)	Written Examination Week 14 35 Not Online In Class Test Week 7	% of Total Mark for Module Learning Outcomes Assessment Role Pass/Fail % of Total Mark for Module Learning Outcomes	% 75.00% 25.00% 75 1,2,3,4,5,6,7,8,9,10,11,12,13 Individual No 10 1,2,3,4,5,6,7
Other Assessment(s) Assessments Formal Examination Assessment Type Indicative Week Assessment Auther Assessment Descri n/a Other Assessment(s Assessment Type Indicative Week Assessment Thresh	nold: nticity ption s)	Written Examination Week 14 35 Not Online In Class Test Week 7 None	% of Total Mark for Module Learning Outcomes Assessment Role Pass/Fail % of Total Mark for Module Learning Outcomes Assessment Role	% 75.00% 25.00% 75 1,2,3,4,5,6,7,8,9,10,11,12,13 Individual No 10 1,2,3,4,5,6,7 Individual
Other Assessment(s) Assessments Formal Examination Assessment Type Indicative Week Assessment Auther Assessment Descrin/a Other Assessment(s Assessment Type Indicative Week Assessment Thresh Assessment Auther	n nold: nticity ption s)	Written Examination Week 14 35 Not Online In Class Test Week 7 None Not Online	% of Total Mark for Module Learning Outcomes Assessment Role Pass/Fail % of Total Mark for Module Learning Outcomes Assessment Role Pass/Fail	% 75.00% 25.00% 75 1,2,3,4,5,6,7,8,9,10,11,12,13 Individual No 10 1,2,3,4,5,6,7 Individual No

Assessment Type	Problem-Based Assignment	% of Total Mark for Module	15	
Indicative Week	Week 10	Learning Outcomes	1,2,8,9,10,11	
Assessment Threshold:	None	Assessment Role	Individual	
Assessment Authenticity	Not Online	Pass/Fail	No	
Assessment Description				

.

Module MATH 4845 - Group Theory v1 (Year/Cycle:1 / Semester:Semester 1 / Delivery Type:Elective)

Module Activity	
Part Time hours per semester	
Activity Type	Duration (Hours)
Self Directed	111
Lecture	39
Hours (up to 100 for 5 ECTS credits)	150.00
Recommended Reading List	
Recommended Book Resources	

Joseph Gallian. (2016), Contemporary Abstract Algebra, Cengage Learning, p.656, [ISBN: 1305657969].

I. N. Herstein. (1996), Abstract Algebra, Wiley, p.272, [ISBN: 0471368792].

John B. Fraleigh. A First Course in Abstract Algebra, [ISBN: 1292024968].

APPROVED

MATH 4853: Introduction to Partial Differential Equations

Module Details	
Module Code:	MATH 4853
Module Long Title:	Introduction to Partial Differential Equations APPROVED
Banner Title:	Intro to Partial Differential Equations
Version:	1
Indicative NFQ level:	Level 8
Valid From:	Sept 2020 (September 2020)
Language of Instruction:	English
ECTS Credits::	7.5
ISCED Code:	0541 - Mathematics
Current Coordinator::	COLUM WATT
Module Coordinators:	COLUM WATT (22 October 2019 to)
School Responsible:	School of Mathematical Sciences (CC)
Campus:	City Campus
Module Overview	Partial differential equations occur throughout mathematical modelling from meteorology and continuum mechanics, to financial mathematics, quantum mechanics, mathematical biology and electromagnetism. This module presents some of the theory of partial differential equations and some of the methods for solving them. The learner will be able to derive solutions for practical partial differential equations and will develop an understanding of their behaviour.
	Introduction to the definitions and terminology associated with partial differential equations: order, linearity, initial and boundary conditions, Dirichlet & Neumann data. Illustration of these concepts in examples. First-order linear and quasi-linear PDEs, first integrals, theory behind the method of characteristics, the use of the method of characteristics to solve explicit problems, singularities and consistency.
Indicative Syllabus	Derivation and solution of simple first order models (for example, a simple traffic flow model). The method of separation of variables for linear first order PDEs, the use of this method to solve explicit problems.
	Non-linear PDEs, derivation of the Lagrange-Charpit equations and some consequences, use of the Lagrange-Charpit equations to solve explicit problems.

	The classification of linear second order PDEs, examples, the definition and calculation of characteristic curves for linear second order PDEs		
Learning and Teaching Methods	Lectures and tutorials.		
Indicative Syllabus			
1. Basics 1.1) Introduction to the definition	is and terminology associated with partial differential equations: order, linearity, initial and boundary conditions, Dirichlet & Neumann data. Illustration of these concepts in examples.		
2. Method of Characteristics 2.1) First-order linear and quasi-	linear PDEs, first integrals, theory behind the method of characteristics, the use of the method of characteristics to solve explicit problems, singularities and consistency.		
3. Simple Models 3.1) Derivation and solution of si	imple first order models (for example, a simple traffic flow model).		
4. Separation of Variables 4.1) The method of separation o	f variables for linear first order PDEs, the use of this method to solve explicit problems.		
5.1st order Nonlinear PDEs 5.1) Non-linear PDEs, derivation of the Lagrange-Charpit equations and some consequences, use of the Lagrange-Charpit equations to solve explicit problems.			

6. Linear 2nd Order PDEs 6.1) The classification of linear second order PDEs, examples, the definition and calculation of characteristic curves for linear second order PDEs

Learning Outcomes	;						
Upon successful com	npletion of this modu	le the learner	will be able to				
#							
MLO1	Apply effective and	d efficient self	-directed study skills in their learning process.				
MLO2	Apply the method	of characteris	tics to determine first integrals and to solve first	st-order, qu	asi-linear, PDEs.		
MLO3	Transform first-ord	der, quasi-line	ar PDEs to their canonical form.				
MLO4	Apply separation of	Apply separation of variables to solve first-order, linear PDEs.					
MLO5	Derive the Lagran	Derive the Lagrange-Charpit equations and some of their consequences.					
MLO6	Apply the Lagrang	e-Charpit equ	ations to solve first-order, nonlinear PDEs.				
MLO7	Derive simple mod	dels such as th	hat for traffic flow.				
MLO8	Classify second or	rder, linear PD	DEs as elliptic, parabolic or hyperbolic and calc	culate the c	orresponding characteristic curves.		
MLO9	Explain the limitati	ons of the me	thods of solution encountered in this module.				
Requisites							
Assessment Thresh	old	There is a t	hreshold of 35% on the formal examination.				
Module Conten	t & Assessmei	nt					
Assessment Breako	lown					%	
Formal Examination						75.00%	
Other Assessment(s)	I					25.00%	
Assessments							
Formal Examination	ı						
Assessment Type			Written Examination		% of Total Mark for Module	75	
Indicative Week			Week 19		Learning Outcomes	1,2,3,4,5,6,7,8,9	
Assessment Thresh	old:		35		Assessment Role	Individual	
Assessment Auther	nticity		Not Online		Pass/Fail	No	
Assessment Descri n/a	ption						
Other Assessment(s	s)						
Assessment Type			Problem-Based Assignment		% of Total Mark for Module	25	
Indicative Week			Week 10		Learning Outcomes	1,2,3,4,6	
Assessment Thresh	old:		None		Assessment Role	Individual	
Assessment Auther	nticity		Not Online		Pass/Fail	No	
Assessment Descri The mid-semester as	ption sessment will consis	st of several p	roblems whose solution is required.				

Module MATH 4853 - Introduction to Partial Differential Equations v1 (Year/Cycle:1 / Semester:Semester 1 / Delivery Type:Elective)

Module Activity	
Part Time hours per semester	
Activity Type	Duration (Hours)
Lecture	39
Self Directed	111
Hours (up to 100 f	for 5 ECTS credits) 150.00
Recommended Reading List	
Recommended Book Resources	
L. Debnath and Tyn Myint-U. (2010), Linear Partial Differential Equations, Birkhauser.	
L. Debnath. (2011), Nonlinear Partial Differential Equations for Scientists and Engineers, 3rd. Birkhauser.	
D.W. Thoe and E.C. Zachmanoglou. (1987), Introduction to Partial Differential Equations with Applications, Dover.	
Supplementary Book Resources	
J. David Logan. (2008), Introduction to Nonlinear Partial Differential Equations, 2nd. Wiley.	
J. Ockendon, S. Howison, A. Lacey. & A. Movchan. (2003), Applied Partial Differential Equations, Oxford University Press.	
I.M. Sneddon. (2006), Elements of Partial Differential Equations, Dover.	

W.E. Williams. (1980), Partial Differential Equations, Oxford Clarendon Press.

J. Blackledge, G. Evans, P. Yardley. (1999), Analytic Methods for Partial Differential Equations, Springer.

HEAD OF SCHOOL

MATH 4849: Quantum Theory 1

Module Details	
Module Code:	MATH 4849
Module Long Title:	Quantum Theory 1 HEAD OF SCHOOL
Version:	1
Valid From:	Sept 2018 (September 2018)
Language of Instruction:	English
ECTS Credits::	7.5
Current Coordinator::	EMIL MIHAYLOV PRODANOV
Module Coordinators:	EMIL MIHAYLOV PRODANOV (14 January 2022 to)
School Responsible:	School of Mathematical Sciences (CC)
Campus:	City Campus
Module Overview	This module introduces the students to quantum mechanics from first principles. Simple quantum systems will be studied and the formalism of quantum theory introduced both in terms of wave functions (Schrödinger formulation) and matrices (Heisenberg's formulation).
Learning and Teaching Methods	Lectures supported by tutorials
Indicative Syllabus	
 The Wave Function The Schrödinger equation. Momentum. The Uncertaint 	Statistical interpretation. Probability. Normalization. y Principle
2. Time-independent Schrödin 2.1) Stationary states. The infini 2.2) The Dirac delta-function. Th	nger Equation te square well. The harmonic oscillator. The free particle. ne delta-function potential. The S-matrix.
3. Formalism 3.1) Hilbert spaces. Observables	s. Eigenfunctions of a Hermitian operator. Generalized statistical interpretation. The Uncertainty Principle. Dirac notation.
4. Quantum Mechanics in thre 4.1) The Schrödinger equation in	e dimensions n spherical coordinates. The Hydrogen atom. Angular Momentum. Spin

Learning Outcom	95
Upon successful co	ompletion of this module the learner will be able to
#	
MLO1	Apply effective and efficient self-directed study skills in their learning process
MLO2	Self-evaluate learning needs and manage learning tasks independently
MLO3	Explain the Schrödinger wave function
MLO4	Solve simple one-dimensional quantum mechanical systems
MLO5	Explain the principles and formalism of quantum theory
MLO6	Solve Schrödinger's equation for the Hydrogen atom and interpret the solution

Requisites

Module Content & Assessment	
Assessment Breakdown	%
Formal Examination	75.00%
Other Assessment(s)	25.00%

Assessments

Assessment Type	Written Examination	% of Total Mark for Module	75	
Indicative Week	Week 1	Learning Outcomes	1,2,3,4,5,6	
Assessment Threshold:	None	Assessment Role	Not yet determined	
Assessment Authenticity	Not Online	Pass/Fail	No	
Assessment Description End-of-module Final Exam				
Other Assessment(s)				
Assessment Type	In Class Test	% of Total Mark for Module	25	
Assessment Type Indicative Week	In Class Test Week 1	% of Total Mark for Module Learning Outcomes	25 1,2,3,4	
Assessment Type Indicative Week Assessment Threshold:	In Class Test Week 1 None	% of Total Mark for Module Learning Outcomes Assessment Role	25 1,2,3,4 Not yet determined	
Assessment Type Indicative Week Assessment Threshold: Assessment Authenticity	In Class Test Week 1 None Not Online	% of Total Mark for Module Learning Outcomes Assessment Role Pass/Fail	25 1,2,3,4 Not yet determined No	

Module MATH 4849 - Quantum Theory 1 v1 (Year/Cycle:1 / Semester:Semester 1 / Delivery Type:Elective)

Module Activity	
Full Time hours per semester	
Activity Type	Duration (Hours)
Self Directed	111
Hours (up to 100 for 5 ECTS credits)	111.00
Recommended Reading List	
Recommended Book Resources	
David J. Griffiths, Darrell F. Schroeter. (2018), Introduction to Quantum Mechanics, Cambridge University Press, p.500, [ISBN: 978-1107189638].	

Supplementary Book Resources

Albert Messiah. (2014), Quantum Mechanics, Courier Corporation, p.1152, [ISBN: 978-0486784557].

L D Landau, E.M. Lifshitz. (1991), Quantum Mechanics, Butterworth-Heinemann, p.677, [ISBN: 978-0750635394].

APPROVED

MATH 4848: Queuing Theory & Stochastic Processes

Module Details MATH 4848 Module Code: Queuing Theory & Stochastic Processes APPROVED Module Long Title: **Banner Title: Queuing Theory & Stochastic Processes** Version: Indicative NFQ level: Level 8 Valid From: Jan 2019 (January 2019) Language of Instruction: English 7.5 ECTS Credits:: **ISCED Code:** 0541 - Mathematics MAEV P MAGUIRE **Current Coordinator::** Module Coordinators: MAEV P MAGUIRE (07 January 2022 to ---) School Responsible: School of Mathematical Sciences (CC) City Campus Campus: This module introduces the learner to the concept of single and multiple server models, infinite and finite, and variable arrival and service rates. It introduces Module Overview stochastic processes, and Markov chains and its applications. Case studies of both areas are covered and solved using appropriate software. **Queuing Theory** Introduction to queuing models. Poisson arrival pattern. Negative exponential service pattern. Different queuing models - M/M/1 and M/M/S infinite models, M/M/1 and M/M/S finite models. M/M/1 with varying arrival patterns and service rates. Derivation and analysis of mean queuing times, mean number of customers in the system, etc. for above models. Applications to queueing problems and case studies.

Indicative Syllabus	Stochastic Processes
	Review of matrix analysis.
	Definition of primitive/imprimitive matrices, reducible/irreducible matrices.
	Definition of a stochastic process and Markov chains.
	First-order and higher order transition matrices.
	Classifications of states of a Markov chain - absorbing, persistent, transient, periodic, null, non-null, ergodic. Theorems relating states, long-term probabilities, etc. Existence of limits for irreducible ergodic chains.
	Applications and case studies.
Learning and Teaching	Lectures and supporting tutorials and laboratory sessions
Methods	Use of software packages to solve problems.
Indicative Syllabus	
1. Queuing Theory 1.1) Introduction to queuing models - I 1.2) Different queuing models - I 1.3) M/M/1 with varying arrival p 1.4) Derivation and analysis of m 1.5) Applications to queueing pro-	lels. Poisson arrival pattern. Negative exponential service pattern. W/M/1 and M/M/S infinite models, M/M/1 and M/M/S finite models. atterns and service rates. nean queuing times, mean number of customers in the system, etc. for above models. oblems and case studies.
2. Stochastic Processes 2.1) Review of matrix analysis.	

2.2) Definition of primitive/imprimitive matrices, reducible/irreducible matrices.
2.3) Definition of a stochastic process and Markov chains.
2.4) First-order and higher order transition matrices.
2.5) Classifications of states of a Markov chain - absorbing, persistent, transient, periodic, null, non-null, ergodic. Theorems relating states, long-term probabilities, etc. Existence of limits for irreducible ergodic chains.
2.6) Applications and case studies.

Module MATH 4848 - Queuing Theory & Stochastic Processes v1 (Year/Cycle:1 / Semester:Semester 1 / Delivery Type:Elective)

Learning Outcomes				
Upon successful com	pletion of this module the learner	will be able to		
#				
MLO1	develop effective and efficient se	elf-directed study skills		
MLO2	self-evaluate learning needs and	I manage learning tasks independently		
MLO3	Identify queueing models			
MLO4	Demonstrate an understanding of	of the arrival and service process		
MLO5	Describe particular queueing mo	dels using various methods		
MLO6	Derive the quantities of interest for particular queueing models			
MLO7	Solve real life queueing problems	s		
MLO8	Define primitive and irreducible n	natrices		
MLO9	Define stochastic processes and	Markov Chains		
MLO10	Compute first and higher order tr	ransition probabilities		
MLO11	Classify the states of a Markov C	Chain		
MLO12	Recognise irreducible ergodic ch	nains with proofs		
Requisites				
Assessment Thresh	old 35% on Exa	m Component		
Module Content	t & Assessment			
Assessment Breakd	own			%
Formal Examination				75.00%
Other Assessment(s)				25.00%
Assessments				
Formal Examination				
Assessment Type		Written Examination	% of Total Mark for Module	75
Indicative Week		Week 14	Learning Outcomes	1,2,3,4,5,6,7,8,9,10,11,12
Assessment Thresh	old:	35	Assessment Role	Not yet determined
Assessment Authen	ticity	Not Online	Pass/Fail	No
Assessment Descrip End of semester Exar	otion mination			
Other Assessment(s	3)			
Assessment Type		In Class Test	% of Total Mark for Module	25
Indicative Week		Week 7	Learning Outcomes	1,2,3,4,5,6
Assessment Thresh	old:	None	Assessment Role	Not yet determined
Assessment Authen	ticity	Not Online	Pass/Fail	No
Assessment Descrip In class test or other a	otion appropriate assessment			

Module MATH 4848 - Queuing Theory & Stochastic Processes v1 (Year/Cycle:1 / Semester:Semester 1 / Delivery Type:Elective)

Module Activity	
Part Time hours per semester	
Activity Type	Duration (Hours)
Lecture	39
Self Directed	111
Hours (up	to 100 for 5 ECTS credits) 150.00
Recommended Reading List	
Recommended Book Resources	
Hamdy A. Taha. (2007), Operations Research, Prentice Hall, p.813, [ISBN: 9780131889231]. Jyotiprasad Medhi. (2010), Stochastic Processes, New Academic Science, p.503, [ISBN: 9781906574307].	

Supplementary Book Resources

David Ray Anderson, Dennis J. Sweeney, Thomas Arthur Williams, Mik Wisniewski. An Introduction to Management Science, [ISBN: 9781408088401].

APPROVED

MATH 4852: Financial Mathematics 2

Module Details	
Module Code:	MATH 4852
Module Long Title:	Financial Mathematics 2 APPROVED
Banner Title:	Financial Mathematics 2
Version:	1
Indicative NFQ level:	Level 8
Valid From:	Jan 2019 (January 2019)
ECTS Credits::	7.5
ISCED Code:	0541 - Mathematics
Current Coordinator::	STEPHEN O SULLIVAN
Module Coordinators:	 SUSAN LAZARUS (17 November 2021 to 19 January 2022) STEPHEN O SULLIVAN (19 January 2022 to)
School Responsible:	School of Mathematical Sciences (CC)
Campus:	City Campus
Module Overview	This module introduces the learner to the mathematics of hedging and pricing of financial derivatives by arbitrage in a continuous-time framework by building on prior knowledge of discrete-time models. Key concepts such as conditional expectation, martingales, change-of-measure, Wiener processes, and Ito calculus are developed in the lead up to the derivation of the Black-Scholes formula and Black-Scholes equation. Monte Carlo methods are considered for solving stochastic differential equations
	Brownian motion Transition from discrete to continuous processes, properties of Brownian motions Stochastic calculus Non-stochastic calculus, stochastic integration and differentials, Ito's Lemma, Ito calculus

	Change of measure
Indicative Syllabus	Girsanov's theorem, martingale representation theorem
	Black Scholes formula and equation
	Derivation, pricing, manipulation
	Monte-Carlo methods for option pricing
	Euler scheme, Milstein scheme, convergence
Learning and Teaching Methods	Lectures supported by problem-solving sessions and the use of mathematical software packages where applicable.

Module MATH 4852 - Financial Mathematics 2 v1 (Year/Cycle:1 / Semester:Semester 2 / Delivery Type:Elective)

Learning Outcomes								
Upon successful com	pletion of this modul	e the lea	arner will be able to					
#								
MLO1	develop effective ar	nd effici	ent self-directed study skills					
MLO2	self-evaluate learni	ng neec	ds and manage learning tasks indeper	ndently				
MLO3	reflect on unfamiliar measures	r conce	pts and successfully contextualize with	hin personal experience	- in particular, concepts including ra	ational markets, arbitra	age-free option pricing, and risk-	neutral probability
MLO4	characterize and id	entify W	viener processes					
MLO5	establish and apply Ito's lemma							
MLO6	treat expectations u	under ch	nange-of-measure					
MLO7	derive and manipul	ate the	Black-Scholes formula and Black-Sch	oles equation				
MLO8	demonstrate Monte	-Carlo r	numerical methods for option pricing					
Requisites								
Requisite Type			Module Title					Туре
Pre Requisite			MATH 4851 v.1 Financial Mathematic	cs 1 [Approved]				Module
Assessment Thresh	old	35% o	n final written examination					
Module Conten	t & Assessmen	t						
Assessment Breakd	lown						%	
Formal Examination							75.00%	
Other Assessment(s)							25.00%	
Assessments								
Formal Examination	1							
Assessment Type			Written Examination		% of Total Mark for Module		75	
Indicative Week			Week 14		Learning Outcomes		1,2,3,4,5,6,7,8	
Assessment Thresh	old:		35		Assessment Role		Individual	
Assessment Authen	ticity		Not Online		Pass/Fail		No	
Assessment Descrip n/a	otion							
Other Assessment(s	5)							
Assessment Type			Practical Assignment		% of Total Mark for Module		25	
Indicative Week			Week 8		Learning Outcomes		1,2,3,4,5,6,7,8	
Assessment Thresh	old:		None		Assessment Role		Individual	
Assessment Authen	ticity		Not Online		Pass/Fail		No	
Assessment Descrip Assignment	otion							

Module MATH 4852 - Financial Mathematics 2 v1 (Year/Cycle:1 / Semester:Semester 2 / Delivery Type:Elective)

Module Activity	
Part Time hours per semester	
Activity Type	Duration (Hours)
Lecture	39
Self Directed	111
Hours (up to 100 for 5 ECTS credits)	150.00

Recommended Reading List

Recommended Book Resources

JOHN. HULL. (2021), Options, Futures, and Other Derivatives, Global Edition, Pearson, [ISBN: 978-1292410654].

Supplementary Book Resources

Paul Wilmott, Susan Howson, Sam Howison, Wilmott-Howison-Dewynne ..., Jeff Dewynne. (1995), The Mathematics of Financial Derivatives, Cambridge University Press, p.317, [ISBN: 978-0521497893].

Steven E. Shreve. (2004), Stochastic Calculus for Finance II, Springer Science & Business Media, p.550, [ISBN: 978-0387401010].

Steven Shreve. (2005), Stochastic Calculus for Finance I, Springer Science & Business Media, p.187, [ISBN: 978-0387249681].

Fima C Klebaner. (2005), Introduction To Stochastic Calculus With Applications (2nd Edition), World Scientific Publishing Company, p.432, [ISBN: 9781848168220].

Salih N. Neftci, Ali Hirsa, Salih N.. Neftci. (2000), An Introduction to the Mathematics of Financial Derivatives, Academic Press, p.527, [ISBN: 978-0125153928].

MATH 4856: Fluid Mechanics 2

Module Details			
Module Code:	MATH 4856		
Module Long Title:	Fluid Mechanics 2 APPROVED		
Banner Title:	Fluid Mechanics 2		
Version:	1		
Indicative NFQ level:	Level 8		
Valid From:	Sept 2023 (September 2023)		
Language of Instruction:	English		
ECTS Credits::	7.5		
ISCED Code:	0541 - Mathematics		
Current Coordinator::	ROSSEN IVANOV		
Module Coordinators:	ROSSEN IVANOV (10 February 2023 to)		
School Responsible:	School of Mathematics & Statistics		
Campus:	City Campus		
Module Overview	This module builds on the material covered in the Fluid Mechanics 1 module. The conservation of momentum equation is used to derive the Navier-Stokes equations. Non dimensional quantities such as the Reynold's number are explored. Derivation of the Navier-Stokes equations and some simple solutions of them, such as pipe flow and flow down an inclined plane will be presented. Slow viscous flows and the biharmonic equation will be analysed. The boundary layer equations will be derived and solved for some simple flows. The approximate Pohlhausen method will be used to solve the boundary layer equations. The fundamental processes governing oceanic and dry atmospheric motions will be investigated. Accelerations relative to the Earth's rotating frame, Coriolis and centrifugal forces, and small amplitude motion in a fluid rotating at constant velocity will be presented. Geostrophic adjustment, geostrophic balance and thermal wind, Ekman layers and barotropic Rossby waves will be analysed.		
Learning and Teaching Methods	Lectures are primarily used to impart module content to the learner. Problem solving sessions and tutorials to support learners and are designed to encourage learners to work both individually and in groups.		
Indicative Syllabus			
1. Derivation and Solutions of 1.1) Rate of strain matrix and its equations, to include Couette flo	the Navier-Stokes equations a diagonalisation, principal axes and principal rates of strain. Rates of translation, rotation, linear strain and shear strain. Newtonian fluids, derivation and solutions of the Navier-Stokes ow, flow in a pipe, flow down an inclined plane. Non-dimensionalisation of the Navier-Stokes equations. Orders of magnitude. The Reynolds number.		
2. Slow Viscous Flows 2.1) Stokes flows, derivation of the biharmonic equation and some solutions of it.			
3. Boundary Layer Theory 3.1) Derivation of the boundary	layer equations and some solutions of them. The Blasius solution. The approximate Pohlhausen method.		

4. Geophysical Fluid Motion
 4.1) Accelerations relative to the Earth's rotating reference frame, Coriolis and centrifugal forces, Ekman layers and barotropic Rossby waves.

Module MATH 4856 - Fluid Mechanics 2 v1 (Year/Cycle:1 / Semester:Semester 2 / Delivery Type:Elective)

Learning Outcomes			
Upon successful com	pletion of this module the learne	er will be able to	
#			
MLO1	Describe and explain the rate	of strain matrix and the fundamental kinematic properties of fluid motion and deformation.	
MLO2	Diagonalise the rate of strain r	natrix in order to calculate principal axes and principal rates of strain.	
MLO3	Derive and calculate some exa	act solutions of the Navier-Stokes equations. Dimensional analysis. Reynolds number.	
MLO4	Derive the equations governing the motion of slow viscous flow from the Navier-Stokes equations.		
MLO5	Solve the biharmonic equation for some specific flows.		
MLO6	Derive the boundary layer equations from the Naiver-Stokes equations.		
MLO7	Apply and interpret the Pohlhausen method to find simple solutions of the boundary layer equations.		
MLO8	Explain aspects of geophysical fluid motion, such as the fundamental processes governing oceanic and dry atmospheric motions.		
Requisites			
Requisite Type		Module Title	Туре
Pre Requisite		MATH 4855 v.1 Fluid Mechanics 1 [Approved]	Module

Module Content & Assessment			
Assessment Breakdown	%		
Formal Examination	75.00%		
Other Assessment(s)	25.00%		

Assessments

Formal Examination			
Assessment Type	Written Examination	% of Total Mark for Module	75
Indicative Week	Week 30	Learning Outcomes	1,2,3,4,5,6,7,8
Assessment Threshold:	None	Assessment Role	Individual
Assessment Authenticity	Not Online	Pass/Fail	No
Assessment Description End of module examination			
Other Assessment(s)			
Assessment Type	Problem-Based Assignment	% of Total Mark for Module	25
Assessment Type Indicative Week	Problem-Based Assignment See Student Handbook	% of Total Mark for Module Learning Outcomes	25 1,2,3,4
Assessment Type Indicative Week Assessment Threshold:	Problem-Based Assignment See Student Handbook None	% of Total Mark for Module Learning Outcomes Assessment Role	25 1,2,3,4 Individual
Assessment Type Indicative Week Assessment Threshold: Assessment Authenticity	Problem-Based Assignment See Student Handbook None Not Online	% of Total Mark for Module Learning Outcomes Assessment Role Pass/Fail	25 1,2,3,4 Individual No

Module MATH 4856 - Fluid Mechanics 2 v1 (Year/Cycle:1 / Semester:Semester 2 / Delivery Type:Elective)

Module Activity	
Full Time hours per semester	
Activity Type	Duration (Hours)
Lecture	39
Self Directed	111
Hours (up to 100 for 5 E	CTS credits) 150.00
Part Time hours per semester	
Activity Type	Duration (Hours)
Lecture	39
Self Directed	111
Hours (up to 100 for 5 E	CTS credits) 150.00
Recommended Reading List	
Recommended Book Resources	
I.G. Currie. (2012), Fundamental Mechanics of Fluids, Fourth Edition, CRC Press, p.607, [ISBN: 9781439874608].	
Joseph Pedlosky. (1992), Geophysical Fluid Dynamics, Springer, p.710, [ISBN: 978-0-387-96387-7].	
Supplementary Book Resources	
Frank M. White. (2021). Fluid Mechanics. 9th edition. McGraw Hill. [ISBN: 9781260258318].	
D. J. Acheson. (1990). Elementary Fluid Dynamics. Oxford University Press. p.408. [ISBN: 9780198596790].	
Hermann Soblighting Klaus Corston (2016) Boundary Lavor Theory 0 th edition. Springer, p. 792 [ISBN: 0702662520171]	
nermann Schlichling, Maus Gersten, (2010), Doundary-Layer Theory, 9-th edition. Springer, p.782, [ISBN: 9783062529171].	

Module Details			
Module Code:	MATH 4847		
Module Long Title:	Linear Programming APPROVED		
Banner Title:	Linear Programming		
Version:	1		
Indicative NFQ level:	Level 8		
Valid From:	Sept 2019 (September 2019)		
Language of Instruction:	English		
ECTS Credits::	7.5		
ISCED Code:	0541 - Mathematics		
Current Coordinator::	MAEV P MAGUIRE		
Module Coordinators:	MAEV P MAGUIRE (26 September 2019 to)		
School Responsible:	School of Mathematical Sciences (CC)		
Campus:	City Campus		
Module Overview	This module introduces the reader to the subject Operations Research and the topic Linear Programming. It introduces the Simplex method for solving LP problems and artificial variables for finding initial basic feasible solutions. The Fundamental Theorem of Linear Programming and the theory behind the Simplex method are presented. Duality and Sensitivity Analysis are also covered. Case studies will be presented and solved using appropriate software.		
	Introduction to and examples of linear programs. Linear programs in standard form. Definitions of feasible, basic feasible and optimal solutions. The fundamental theorem of linear programming (with proof). Relations to convexity.		
Indicative Syllabus	Simplex method - pivots, vectors to leave and enter basis, determining a minimum feasible solution.		
	Duality - dual linear programs, the duality theorem.		

	Simplex multipliers. sensitivity and complementary slackness. Dual Simplex method. Primal-dual algorithm. Reduction of linear inequalities.			
Learning and Teaching Methods	Lectures and supporting tutorials and laboratory sessions			
Indicative Syllabus				
1. Linear Programming 1.1) Introduction to and examp 1.2) Definitions of feasible, bas 1.3) The fundamental theorem	les of linear programs. Linear programs in standard form. ic feasible and optimal solutions. of linear programming (with proof).			
 1.4) Relations to convexity. 1.5) Simplex method - pivots, vectors to leave and enter basis, determining a minimum feasible solution. 1.6) Artificial variables. Variables with upper bounds. 1.7) Duality - dual linear programs, the duality theorem. 1.8) Simplex multipliers, sensitivity, and complementary slackness. 				

1.9) Dual Simplex method. Primal-dual algorithm. Reduction of linear inequalities.

Learning Outcomes							
Upon successful com	npletion of this module	e the learner	will be able to				
#							
MLO1	Develop effective ar	nd efficient se	elf-directed study skills				
MLO2	Self-evaluate learnin	ng needs and	d manage learning tasks indep	endently			
MLO3	Recognise problems	s that can be	solved using linear programm	ning			
MLO4	Formulate Linear Pr	ogramming r	models				
MLO5	Prove the Fundame	ntal Theorem	n of Linear Programming				
MLO6	Apply the simplex m	nethod to LP	problems				
MLO7	Use artificial variable	es to find an	initial basic feasible solution				
MLO8	Formulate and solve	e the Dual of	LP problems				
MLO9	Prove the Duality Th	neorem					
MLO10	Apply sensitivity ana	alysis to LP p	problems				
MLO11	Apply the Dual Simp	olex method t	to LP problems				
Requisites							
Assessment Threshold 35% on exam component							
Module Conten	t & Assessment	t					
Assessment Breakd	lown					%	
Formal Examination	Formal Examination 75.00%						
Other Assessment(s)	Other Assessment(s) 25.00%						
Assessments							
Formal Examination	۱						
Assessment Type			Written Examination		% of Total Mark for Module	75	
Indicative Week			Week 14		Learning Outcomes	1,2,3,4,5,6,7,8,9,10,11	
Assessment Thresh	old:		35		Assessment Role	Not yet determined	
Assessment Authenticity		Not Online		Pass/Fail	No		
Assessment Description End of semester Examination							
Other Assessment(s)							
Assessment Type			In Class Test		% of Total Mark for Module	25	
Indicative Week	licative Week 7 Learning Outcomes			1,2,3,4,5,6			
Assessment Threshold: None			Assessment Role	Not yet determined			
Assessment Authen	Assessment Authenticity Not Online Pass/Fail No						
Assessment Description In class test or appropriate alternative assessment							

Module Activity	
Full Time hours per semester	
Activity Type	Duration (Hours)
Lecture	150
Hours (up t	o 100 for 5 ECTS credits) 150.00
Recommended Reading List	

Recommended Book Resources

David G. Luenberger, Yinyu Ye. (2008), Linear and Nonlinear Programming, Springer Science & Business Media, p.546, [ISBN: 9780387745029].

Hamdy A. Taha. (2007), Operations Research, Prentice Hall, p.813, [ISBN: 978-0131889231].

David Ray Anderson, Dennis J. Sweeney, Thomas Arthur Williams, Mik Wisniewski. An Introduction to Management Science, [ISBN: 9781408088401].

APPROVED

MATH 4854: Partial Differential Equations and Numerical Methods

Module Details				
Module Code:	MATH 4854			
Module Long Title:	Partial Differential Equations and Numerical Methods APPROVED			
Banner Title:	PDEs and Numerical Methods			
Version:	1			
Indicative NFQ level:	Level 8			
Valid From:	Jan 2021 (January 2021)			
Language of Instruction:	English			
ECTS Credits::	7.5			
ISCED Code:	0541 - Mathematics			
Current Coordinator::	COLUM WATT			
Module Coordinators:	COLUM WATT (05 January 2022 to)			
School Responsible:	School of Mathematical Sciences (CC)			
Campus:	City Campus			
Module Overview	The module presents techniques for solving second and higher order, linear, partial differential equations. Standard analytic methods are used to solve sor of the important linear partial differential equations that arise in practical problems. Some numerical methods and their associated theory are also presented and their use illustrated.			
	Second and higher order linear PDEs: examples arising from practical problems, boundary conditions; Dirichlet & Neumann data.			
	Derivation of canonical forms of linear, second order PDEs, calculation of canonical forms in explicit examples.			
	Hyperbolic equations: solution by characteristic curves, explicit examples, D'Alembert's solution of the wave equation.			
Indicative Syllabus	Definition and examples of Sturm-Liouville systems; definition and properties of eigenvalues and eigenfunctions of Sturm-Liouville systems; calculation of eigenvalues and eigenfunctions for explicit examples; solution of non-homogeneous systems by orthogonal expansions; examples.			
	Explanation of the method of separation of variables for linear PDEs; the use of this method in solving particular examples of the heat equation, Laplace's equation and the wave equation.			

Page 58 of 89

	Finite differences for linear partial differential equations: discussion of the need for, and derivation of, finite difference methods; illustration (by hand) of the use of finite difference methods in small examples; the concepts of convergence, consistency and stability; examples of checking explicit numerical schemes for consistency and stability; the use of Lax's Equivalence Theorem.		
Learning and Teaching Methods	Lectures and Tutorials		
Indicative Syllabus			
1. Basics 1.1) Second and higher order linear PDEs: examples arising from practical problems, boundary conditions; Dirichlet & Neumann data.			
2. Canonical Forms 2.1) Derivation of canonical forms of linear, second order PDEs, calculation of canonical forms in explicit examples.			

3. D'Alembert's Solution

3.1) Hyperbolic equations: solution by characteristic curves, explicit examples, D'Alembert's solution of the wave equation.

4. Sturm-Liouville Systems

4.1) Definition and examples of Sturm-Liouville systems; definition and properties of eigenvalues and eigenfunctions of Sturm-Liouville systems; calculation of eigenvalues and eigenfunctions for explicit examples; solution of non-homogeneous systems by orthogonal expansions; examples.

5. Separation of Variables

5.1) Explanation of the method of separation of variables for linear PDEs; the use of this method in solving particular examples of the heat equation, Laplace's equation and the wave equation.

6. Finite Difference Methods

6.1) Finite differences for linear partial differential equations: discussion of the need for, and derivation of, finite difference methods; illustration (by hand) of the use of finite difference methods in small examples; the concepts of convergence, consistency and stability; examples of checking explicit numerical schemes for consistency and stability; the use of Lax's Equivalence Theorem.

Learning Outcomes					
Upon successful com	pletion of this modu	le the learner will be able to			
#					
MLO1	Apply effective and	d efficient self-directed study skills in their learning	g process		
MLO2	Transform second	order linear PDEs to their canonical forms and, h	ence, solve them in some cases		
MLO3	Apply D'Alembert's	s method to solve the wave equation			
MLO4	Calculate the eiger	nvalues and eigenfunctions of simple Sturm-Liouv	ville systems and use them to solve associated non-homoge	neous equations	
MLO5	Apply separation o	of variables to solve standard second order PDEs	such as Laplace's equation, the heat equation and the wave	equation	
MLO6	Derive some of the	e second order PDEs (such as the wave equation	and the heat equation) that arise from physical problems		
MLO7	Formulate numeric	cal schemes for solving linear partial differential e	quations		
MLO8	Explore numerical	schemes for consistency, stability and converger	nce		
Requisites					
Assessment Thresh	old	There is a threshold of 35% in the formal exami	ination.		
Module Content	t & Assessmer	nt			
Assessment Breakd	own			%	
Formal Examination				75.00%	
Other Assessment(s)	Other Assessment(s) 25.00%				
Assessments					
Formal Examination					
Assessment Type		Written Examination	% of Total Mark for Module	75	
Indicative Week		Week 18	Learning Outcomes	1,2,3,4,5,6,7,8	
Assessment Thresh	old:	35	Assessment Role	Individual	
Assessment Authen	ticity	Not Online	Pass/Fail	No	
Assessment Description n/a					
Other Assessment(s	;)				
Assessment Type		Problem-Based Assignment	% of Total Mark for Module	25	
Indicative Week		Week 9	Learning Outcomes	1,2,3,4	
Assessment Threshold: None Assessment Role Individual					
Assessment Authenticity		Not Online	Pass/Fail	No	
Assessment Descrip n/a	Assessment Description				

Module MATH 4854 - Partial Differential Equations and Numerical Methods v1 (Year/Cycle:1 / Semester:Semester 2 / Delivery Type:Elective)

Module Activity			
Part Time hours per semester			
Activity Type	Duration (Hours)		
Lecture	39		
Self Directed	111		
Hours (up to 100 for 5 ECTS credits)	150.00		
Recommended Reading List			
Recommended Book Resources			
L. Debnath and Tyn Myint-U. (2010), Linear Partial Differential Equations, Birkhauser.			
J. David Logan. Applied Partial Differential Equations, Springer.			
Peter J Olver. (2014), Introduction to Partial Differential Equations, Springer.			
Supplementary Book Resources			
J. Ockendon, S. Howison, A. Lacey & A. Movchan. (2003), Applied Partial Differential Equations, Oxford University Press.			
I.M. Sneddon. (2006), Elements of Partial Differential Equations, Dover.			
W.E. Williams. (1980), Partial Differential Equations, Oxford Clarendon Press.			

D.W. Thoe and E.C. Zachmanoglou. (1987), Introduction to Partial Differential Equations with Applications, Dover.

J. Blackledge, G. Evans, P. Yardley. (1999), Analytic Methods for Partial Differential Equations, Springer.

HEAD OF SCHOOL

MATH 4850: Quantum Theory 2

Module Details	
Module Code:	MATH 4850
Module Long Title:	Quantum Theory 2 HEAD OF SCHOOL
Version:	1
Valid From:	Jan 2019 (January 2019)
ECTS Credits::	7.5
Current Coordinator::	EMIL MIHAYLOV PRODANOV
Module Coordinators:	EMIL MIHAYLOV PRODANOV (14 January 2022 to)
School Responsible:	School of Mathematical Sciences (CC)
Module Overview	This module builds on Quantum Theory 1 and presents Quantum Theory from a mathematical perspective.
Indicative Syllabus	
1. Angular momentum in q 1.1) n/a	Jantum mechanics
2. Mathematical Apparatus 2.1) The Stern-Gerlach expe functions in position and mor	riment; kets, bras, and operators; base kets and matrix representations; measurements, observables and the uncertainty relations; change of basis; position, momentum, and translation; wave nentum space
3. Quantum Dynamics	Schrodinger equation: the Schrodinger versus the Heisenberg nicture: simple harmonic oscillator: Schrodinger's wave equation

[3.1) Time evolution and the Schrodinger equation; the Schrodinger versus the Heisenberg picture; simple harmonic oscillator; Schrodinger's wave equation

Module MATH 4850 - Quantum Theory 2 v1 (Year/Cycle:1 / Semester:Semester 2 / Delivery Type:Elective)

Learning Outcomes	Learning Outcomes				
Upon successful con	Upon successful completion of this module the learner will be able to				
#					
MLO1	Apply effective and	efficient self-directed study skills in their learning process			
MLO2	Self-evaluate learn	ing needs and manage learning tasks independently			
MLO3	Describe the conce	pt of angular momentum in Quantum Mechanics			
MLO4	Express the realisation of physical observables as Hermitian operators acting in the space of physical states				
MLO5	Explain compatibility and measurement				
MLO6	Apply the principles of algebraic approaches to selected quantum mechanical problems				
MLO7	Explain how Quantum Mechanics fits in the wider picture of physics and mathematics and the interplay between Quantum Mechanics and other major branches – classical mechanics, linear algebra, group theory, functional analysis				
MLO8	Give examples of the mathematical apparatus of Quantum Mechanics				
MLO9	Mathematically formulate Quantum Mechanics in both Schrodinger's and Heisenberg's formulations				
Requisites					
Requisite Type		Module Title	Туре		
Pre Requisite	MATH 4849 v.1 MATH 4849 Quantum Theory 1 [Head of School] Module				

Module Content & Assessment			
Assessment Breakdown	%		
Formal Examination	75.00%		
Other Assessment(s)	25.00%		

Assessments

Formal Examination					
Assessment Type	Written Examination	% of Total Mark for Module	75		
Indicative Week	Week 1	Learning Outcomes	1,2,3,4,5,6,7,8,9		
Assessment Threshold:	None	Assessment Role	Not yet determined		
Assessment Authenticity	Not Online	Pass/Fail	No		
Assessment Description End-of-module Final Exam					
Other Assessment(s)					
Assessment Type	In Class Test	% of Total Mark for Module	25		
Assessment Type Indicative Week	In Class Test Week 1	% of Total Mark for Module Learning Outcomes	25 1,2,3,4,5		
Assessment Type Indicative Week Assessment Threshold:	In Class Test Week 1 None	% of Total Mark for Module Learning Outcomes Assessment Role	25 1,2,3,4,5 Not yet determined		
Assessment Type Indicative Week Assessment Threshold: Assessment Authenticity	In Class Test Week 1 None Not Online	% of Total Mark for Module Learning Outcomes Assessment Role Pass/Fail	25 1,2,3,4,5 Not yet determined No		

Module MATH 4850 - Quantum Theory 2 v1 (Year/Cycle:1 / Semester:Semester 2 / Delivery Type:Elective)

Module Activity				
Full Time hours per semester				
Activity Type	Duration (Hours)			
Self Directed	111			
Hours (up to 100 for 5 ECTS credits)	111.00			
Recommended Reading List				
Recommended Book Resources				
J. J. Sakurai, Jim Napolitano. (2020), Modern Quantum Mechanics, Cambridge University Press, p.566, [ISBN: 978-1108473224].				

David J. Griffiths, Darrell F. Schroeter. (2018), Introduction to Quantum Mechanics, Cambridge University Press, p.500, [ISBN: 978-1107189638].

Supplementary Book Resources

L D Landau, E.M. Lifshitz. (1991), Quantum Mechanics, Butterworth-Heinemann, p.677, [ISBN: 978-0750635394].

APPROVED

MATH 4846: Ring Theory with Applications

Module Details	
Module Code:	MATH 4846
Module Long Title:	Ring Theory with Applications APPROVED
Banner Title:	Ring Theory with Applications
Version:	1
Indicative NFQ level:	Level 8
Valid From:	Jan 2021 (January 2021)
Language of Instruction:	English
ECTS Credits::	7.5
ISCED Code:	0541 - Mathematics
Current Coordinator::	SUSAN LAZARUS
Module Coordinators:	SUSAN LAZARUS (14 January 2020 to)
School Responsible:	School of Mathematical Sciences (CC)
Campus:	City Campus
Module Overview	The module investigates the algebraic systems of rings and looks at some modern applications of ring theory.
Indicative Syllabus	Ring Theory Ring axioms and examples of rings and subrings. Commutative rings. Zero-divisors and Integral Domains, division rings and fields. Ring homomorphisms and isomorphisms. Ideals, quotient rings, and the homomorphism theorems. Principal ideal domains, prime ideals, maximal ideals.

	Field of Quotients of a commutativie ring.
	Divisibility, Euclidean domains, Polynomial rings.
	Direct sum of rings.
	Applications
	Construction of finite fields, Random number generators, Error correcting codes.
Learning and Teaching Methods	Lectures supported by tutorials

Learning Outcomes							
Upon successful completion of this module the learner will be able to							
#							
MLO1	develop effective a	and efficient se	elf-directed study skills				
MLO2	self-evaluate learn	ing needs and	I manage learning tasks independen	itly			
MLO3	explain the differer	nt axiomatic st	ructures of rings, integral domains a	nd fields,			
MLO4	describe and expla	ain the range o	of examples of rings, integral domain	is and fields discuss	ed in class,		
MLO5	identify if given sub	osets are subr	ings and /or ideals of a given ring,				
MLO6	describe different t	ypes of ideals	(principal, prime, maximal) and iden	ntify such ideals,			
MLO7	determine if mappi	ngs between	rings are homomorphisms and/or isc	pmorphisms, and fine	d the kernel of homomorphisms,		
MLO8	construct factor rin	gs,					
MLO9	explain the relation	nship between	ideals, homomorphisms and factor i	rings and applicatior	ns thereof.		
Requisites							
Assessment Thresh	old	Threshold o	f 35% on formal examination				
Module Conten	t & Assessmer	nt					
Assessment Breakd	lown					%	
Formal Examination						75.00%	
Other Assessment(s)						25.00%	
Assessments							
Formal Examination	l						
Assessment Type			Written Examination		% of Total Mark for Module	75	
Indicative Week			Week 14		Learning Outcomes	1,2,3,4,5,6,7,8,9	
Assessment Thresh	old:		35		Assessment Role	Individual	
Assessment Authen	ticity		Not Online		Pass/Fail	No	
Assessment Description n/a							
Other Assessment(s	s)						
Assessment Type			Problem-Based Assignment		% of Total Mark for Module	25	
Indicative Week	Week 8 Learning Outcomes 1,2,3,4,5,6,7						
Assessment Thresh	ment Threshold: None Assessment Role Individual						
Assessment Authen	ticity		Not Online		Pass/Fail	No	
Assessment Descrip n/a	otion						

Module MATH 4846 - Ring Theory with Applications v1 (Year/Cycle:1 / Semester:Semester 2 / Delivery Type:Elective)

Module Activity				
Part Time hours per semester				
Activity Type	Duration (Hours)			
Self Directed	111			
Lecture	39			
Hours (up to 100 for 5 ECTS credits)	150.00			
Recommended Reading List				
Recommended Book Resources				

Joseph Gallian. (2016), Contemporary Abstract Algebra, Cengage Learning, p.656, [ISBN: 1305657969].

I. N. Herstein. (1996), Abstract Algebra, Wiley, p.272, [ISBN: 0471368792].

John B. Fraleigh. A First Course in Abstract Algebra, [ISBN: 1292024968].

APPROVED MATH 4842: Mathematical Methods II

Module Details MATH 4842 Module Code: Module Long Title: Mathematical Methods II APPROVED **Banner Title:** Mathematical Methods II Version: Sept 2019 (September 2019) Valid From: Language of Instruction: English 7.5 ECTS Credits:: 0541 - Mathematics **ISCED Code: Current Coordinator::** COLUM WATT Module Coordinators: COLUM WATT (07 January 2020 to ---) School Responsible: School of Mathematical Sciences (CC) City Campus Campus: This module contains a treatment of advanced mathematical techniques applied to linear ordinary and partial differential equations. The general theory of linear ordinary differential equations is developed and methods of solution, such as the use of series expansions and Green's functions, are demonstrated. A variety of methods for solving linear partial differential equations are Module Overview presented and the properties of some of the important functions of mathematical physics are investigated. Linear Ordinary Differential Equations General theory of linear ordinary differential equations. Power series solutions and the method of Frobenius for second-order, linear, ordinary differential equations. The Dirac delta. Green's functions for Sturm-Liouville systems. Solution Techniques for Linear Partial Differential Equations Separation of variables. The use of integral transforms (Fourier's sine, cosine and exponential transforms; the Laplace transform). Green's functions. Indicative Syllabus **Special Functions** Laplace's equation in polar coordinates. Bessel and Legendre functions and their properties. Orthogonal expansions. **Calculus of Variations** Classical variational problems. The Euler-Lagrange equations and their use. Variational formulation of Sturm-Liouville systems and approximation of eigenvalues.

Learning and Teaching Methods	Lectures and tutorials.			
Indicative Syllabus	Indicative Syllabus			
1. Linear Ordinary Differential Equations 1.1) General theory of linear ordinary differential equations. Power series solutions and the method of Frobenius for second-order, linear, ordinary differential equations. The Dirac delta. Green's functions for Sturm-Liouville systems.				
2. Solution Techniques for Linear Partial Differential Equations 2.1) Separation of variables. The use of integral transforms (Fourier's sine, cosine and exponential transforms; the Laplace transform). Green's functions.				
 3. Special Functions 3.1) Laplace's equation in polar coordinates. Bessel and Legendre functions and their properties. Orthogonal expansions. 				

4. Calculus of Variations (4.1) Classical variational problems. The Euler-Lagrange equations and their use. Variational formulation of Sturm-Liouville systems and approximation of eigenvalues.

Module MATH 4842 - Mathematical Methods II v1 (Year/Cycle:2 / Semester:Semester 1 / Delivery Type:Mandatory)

lique suesses Unite and un table to the line and under the line ar ordinary differential equations i NLO2 dedect and use appropriate series expansions to solve accord order incar ordinary differential equations i NLO3 deduct and use appropriate series expansions to solve accord order incar ordinary differential equations i NLO3 deduct and use appropriate series expansions to solve accord order incar ordinary differential equations i NLO3 appropriate series expansions to solve accord order incar ordinary differential equations, the heat equation and Lapiace's equation) in tailored coordinate systems NLO3 derive and demonstrate an understanding of the main properties of Bessel functions and Legendre polynomials NLO5 derive and demonstrate an understanding of the main properties of Bessel functions and Legendre polynomials NLO5 use the Euler-Lagrange equations to solve variational problems NLO3 use the Euler-Lagrange equations to solve variational problems NLO3 use the Euler-Lagrange equations to solve variational problems NLO5 Use Sessessment Sessessment Sessessment Sessessment Sessessment Sessessment Sessessment Sessessment Sessessment Sessessment Sessessment Sessessment Sessessment Sessessment Type V Mitten Examination No Conline Sessessment Type V Merk 14 Sessessment Type V M	Learning Outcomes						
i demonstrate and effect in the theory of linear ordinary differential equations NLO3 demonstrate Green is functions and use them to solve Saron-Localle systems NLO3 calculate Green is functions and use them to solve Saron-Localle systems NLO4 apply separation of vialables to solve importani linear properties of Bessel functions and Legendre polynomials NLO5 derive and demonstrate an understanding of the main properties of Bessel functions and Legendre polynomials NLO5 derive and demonstrate an understanding of the main properties of Bessel functions and Legendre polynomials NLO5 derive and demonstrate an understanding of the main properties of Bessel functions and Legendre polynomials NLO5 use the Euler-Lagrange equations to solve variations problems NLO5 use the Euler-Lagrange equations to solve variation problems NLO5 use the Euler-Lagrange equations to solve variation problems NLO5 use the Euler-Lagrange equations to solve variation problems NLO5 to the the Sale-Lagrange equations to solve variation problems NLO5 use the Euler-Lagrange equations to solve variation problems NLO5 to the table of 0.35% on the main exam NLO5 to the sale hreshold of 0.35% on the main exam NU5 to the sale hreshold of 0.35% on the main exam NU5 to the sale hreshold of 0.35% on the main exam NU5 to the Sale Sale Sale Sale Sale Sale Sale Sal	Upon successful completion of this module the learner will be able to						
MLC1 demonstrate an understanding of the theory of linear ordinary differential equations MLC2 select and use appropriete series expansions is solve second ordinary differential equations MLC3 apply separation d' variables to solve Sturm-Louville systems MLC4 apply separation d' variables to solve Sturm-Louville systems MLC5 derive and denomistrate an understanding of the man properties of Bessel functions and Legendre polynomials MLC6 derive and denomistrate an understanding of the main properties of Sturm-Louville systems. MLC7 use the Euler-Lagrange equations to solve variational problems MLC6 use the Euler-Lagrange equations to solve variation and properties of Sturm-Louville systems. Registration There is a transmittion of the main exam Sessessment True There is a transmittion of the main exam Sessessment True Yeard Stars Sturm-Louville systems. Sessessment True Yeard Stars Sturm-Louville systems Sessessment True Solve V Sessessment True Yeard Stars Sturm-Louville systems Sessessment True Solve Yard Stars Sturm-Sturment Sturment Sturmen	#						
Mu2 select and use appropriete en/r sevan is no/ve second order linear ordinary differential equations (sluch as the vave equation, the heat equation and Laplace's equation) in tailored coordinate systems and poly segaration of variables to solve important linear point all differential equations (sluch as the vave equation, the heat equation and Laplace's equation) in tailored coordinate systems with a state wave equation, the heat equation and Laplace's equation) in tailored coordinate systems with a state wave equation, the heat equation and Laplace's equation) in tailored coordinate systems with a state wave equation, the heat equation and Laplace's equation) in tailored coordinate systems. The set of and discontroport of the main properties of Bessel functions and Legendre polynomials with equations and use the solut and use and variations to estimate eigenvalues of Sturm-Louville systems. The set of a clackate or trained on to be variational problems with solve Sturm-Louville systems. The set of a clackate or trained on the set of Sturm-Louville systems. The set of the same eigenvalues of Sturm-Louville systems. The set of set of State Set Sturm-Louville systems. The set of State Set Sturm set State Set State Set Set State Set Set State Set Set Set Set Set Set Set Set State Set Set Set Set Set Set Set Set Set S	MLO1	demonstrate an understanding of the theory of linear ordinary differential equations					
MLO3 calcale Green's functions and use them to solve Sturn-Liouville systems VLO4 apply searation of variables to solve important linear partial differential equations (such as the wave equation, the heta equation and Laplace's usualion) in tailored coordinate systems MLO5 derive and demonstrate a unidensitating of the main properties of Bessel functions and Legendre polynomials MLO8 use the Euler-Lagrange equations to solve variational problems ULO8 use the Euler-Lagrange equations to solve variational problems ULO8 use the Subset Su	MLO2	select and use app	propriate series expansions to solve second	order linear ordinary differential equation	IS		
MLO4 apply separation of variables to solve important linear paralial differential equations (such as the wave equation, the heat equation and Lapiace's equation) in tailored coordinate systems. WLO5 derive and demonstrate an understanding of the main properties of Beasel functions and Legnatore polynomials. MLO5 calculate orthogonal expansions of simple functions MLO7 us the Euler-Lagrange equations to solve variational properties of Beasel functions set wave equation, the heat equation and Lapiace's equation) in tailored coordinate systems. MLO6 use the Calculate orthogonal expansions of simple functions MLO7 use the Euler-Lagrange equations to solve variational problems MLO4 use the calculate orthogonal expansions of Storm-Llouville systems. Sequisites Sequisites MLO4 to solve orthogonal expansions of Storm-Llouville systems. MLO4 use the calculate orthogonal expansions of Storm-Llouville systems. MLO4 use the calculate orthogonal expansions of Storm-Llouville systems. MLO4 use the calculate orthogonal expansions of Storm-Llouville systems. MLO4 use the Calculate orthogonal expansions of Storm-Llouville systems. MLO4 use the Calculate orthogonal expansions of Storm-Llouville systems. MLO4 use the Calculate orthogonal expansions of Storm-Llouville systems. MLO4 use the Calculate orthogonal expansions of Storm-Llouville systems. MLO4 to the Calculate orthogonal expansions of Storm-Llouville systems. MLO4 to the Calculate orthogonal expansions of Storm-Llouville systems. MLO4 to the Calculate orthogonal expansions of Storm-Llouville systems. MLO4 to the Calculate orthogonal expansions of Storm-Llouville systems. MLO4 to the Calculate orthogonal expansions of Storm-Llouville systems. MLO4 to the Calculate orthogonal expansions of Storm-Llouville systems. MLO4 to the Calculate orthogonal expansions of Storm-Llouville systems. MLO4 to the Calculate orthogonal expansion orthogon or	MLO3	calculate Green's f	functions and use them to solve Sturm-Liou	ville systems			
MLO6 derive and demonstrate an understanding of the main properties of Bessel functions and Legendre polynomials WLO8 calculate orthogonal expansions of simple functions MLO7 use the Calculate orthogonal expansions of simple functions MLO2 use the calculus of variational problems WLO8 use the calculus of variations to estimate eigenvalues of Sturm-Liouville systems. Requisites Requisites Requisites Requisites Requisites Requisites Requisites Requisites Requisites Requisites Requisites Requisites Requisites Requisites Requisites Requisites Requisites Requisites Requisite	MLO4	apply separation of	f variables to solve important linear partial of	lifferential equations (such as the wave e	quation, the heat equation and La	aplace's equation) in tailored coordinate systems	
MLO6 adduate orthogonal expansions of simple functions MLO7 use the Euler-Lagrange equations to estimate igenvalues of Surm-Liouville systems. MLO8 use the calculus of variational problems MLO8 use the calculus of variational problems Accessment function Assessment Tures by Assessment Sures - Sures	MLO5	derive and demons	strate an understanding of the main propert	es of Bessel functions and Legendre pol	ynomials		
MLO7 use the Euler-Lagrange equations to solve variational problems NLO8 use the calculus of variations to estimate eigenvalues of Sturm-Liouville systems. Requisites Requisites MLO8 is the calculus of variations to estimate eigenvalues of Sturm-Liouville systems. Requisites MLO7 is a threshold of 35% on the main exam MLO8 is a threshold of 35% on the main exam MLO8 is a threshold of 35% on the main exam MLO8 is a threshold of 35% on the main exam MLO8 is a threshold of 35% on the main exam MLO8 is a threshold of 35% on the main exam MLO8 is a threshold of 35% on the main exam MLO8 is a threshold of 35% on the main exam MLO8 is a threshold of 35% on the main exam MLO8 is a threshold of 35% on the main exam Sessement Type is a threshold of 35% on the main exam Sessement Type is a threshold of 35% on the main exam Sessement Type is a threshold of 35% on the main exam Sessement Type is a threshold of 35% on the main exam Sessement Type is a threshold of 36% on the main exam Sessement Type is a threshold of Asessement	MLO6	calculate orthogona	al expansions of simple functions				
MLOB is the calculus of variations to estimate eigenvalues of Sturm-Liouville systems. Requisites Requisites Assessment Tirreshold There is a threshold of 35% on the main exam Module Content & Assessment Seessment Seessment Assessment Tirreshold There is a threshold of 35% on the main exam Module Content & Assessment Yes Sessment Tirreshold There is a threshold of 35% on the main exam Module Content & Assessment Yes Sessment Tirreshold Yes %of Cotal Mark for Module Ormal Examination Sessment Tirreshold: So No Sessment Tirreshold: Si Assessment Authenticity No Ionline Sessment Tirreshold: Si Assessment Authenticity No Ionline Sessessment Tirreshold: Si Assessment Tirreshold: Si Assessment Tirreshold: Si Assessment Tirreshold: Sessessment Tirreshold: Si Cota Tirreshold Assessment Tirreshold: Si Assessment Tirreshold: Si Assessment Tirreshold: Sessessment Tirreshold: Si Cota Tirreshold Si Cota Tirreshold: Si Cota Tirreshold: Si Cota Tirreshold: Sessessment Tirreshold: Si Cota Tirreshold: Si Cota Tirreshold: <th>MLO7</th> <th>use the Euler-Lagra</th> <th>range equations to solve variational problem</th> <th>IS</th> <th></th> <th></th> <th></th>	MLO7	use the Euler-Lagra	range equations to solve variational problem	IS			
Requisites Assessment Threshold There is a threshold of 35% on the main exam Module Content & Assessment Module Content & Assessment Module Content & Assessment Module Content & Assessment Sessment Breakdown % Sessment Breakdown Content & Assessment(s) Sessment Sessment Sessment Type Written Examination % of Total Mark for Module 75 Sessment Type Written Examination % of Total Mark for Module 75 Assessment Type Written Examination % of Total Mark for Module 75 Assessment Type Mritten Examination % of Total Mark for Module 75 Assessment Type Not Online Pass/Fail No Assessment Authenticity Not Online Viter Assessment Type In Class Test % of Total Mark for Module 25 Viter Assessment Type In Class Test % of Total Mark for Module <th colspan="</td> <td>MLO8</td> <td>use the calculus of</td> <td>f variations to estimate eigenvalues of Sturn</td> <td>n-Liouville systems.</td> <td></td> <td></td> <td></td>	MLO8	use the calculus of	f variations to estimate eigenvalues of Sturn	n-Liouville systems.			
Assessment Threshold There is a threshold of 35% on the main exam Module Content & Assessment Assessment Breakdown % Sessment Breakdown 75.00% 75.00% There is a threshold of 35% on the main exam 75.00% 25.00% Sessment(s) 25.00% 25.00% Sessment(s) 25.00% 25.00% SessmentSommation 75 75 ormal Examination % of Total Mark for Module 75 Assessment Type Written Examination % of Total Mark for Module 75 Assessment Type Written Examination % of Total Mark for Module 75 Assessment Type Written Examination % of Total Mark for Module 75 Assessment Type Written Examination % of Total Mark for Module 75 Assessment Type Not Online Pass/Fail No Assessment Authenticity Not Online Pass/Fail No Assessment Type In Class Test % of Total Mark for Module 25 Ther Assessment Type In Class Test % of Total Mark for Module 25 Assessment Type In Class Test % of Total Mark	Requisites						
Module Content & Assessment % Assessment Breakdown % Formal Examination 75.00% Other Assessment(s) 25.00% Sessessment(s) 25.00% Issessment(s) 25.00% Sessessment Server Sessesment Server Sessesment Ype Written Examination Assessment Type Written Examination Assessment Type Written Examination Assessment Type Week 14 Learning Outcomes 1.2.3.4.5.6.7.8 Assessment Authenticity Not Online Assessment Role Individual Assessment Server Se	Assessment Thresh	old	There is a threshold of 35% on the main e	exam			
Assessment Breakdown % Formal Examination 75.00% Other Assessment(s) 25.00% SessmentS 25.00% Formal Examination 25.00% SessmentS 5 Formal Examination 5 Assessment Type Writen Examination Assessment Type No Fortal Mark for Module 75 Assessment Authenticity No Online Assessment Role Individual Assessment Description No Seessment Seessment Type In Class Test % of Total Mark for Module 25 Indicative Week See Student Handbook Learning Outcomes 1,2,3,4 1,2,3,4 Assessment Threshold: See Student Handbook Learning Outcomes 1,2,3,4 Assessment Threshold: See Student Handbook Learning Outcomes 1,2,3,4 Assessment Threshold: See Student Handbook Learning Outcomes	Module Content	& Assessmer	nt				
Formal Examination 75.00% Dther Assessment(s) 25.00% AssessmentS Seasant Seasa	Assessment Breakd	own				%	
Other Assessment(s) 25.00% Assessments Formal Examination Formal Examination % of Total Mark for Module 75 Assessment Type Week 14 Learning Outcomes 1.2,3,4,5,6,7,8 Assessment Threshold: 35 Assessment Role Individual Assessment Description The main exam lasts for 2 hours No Sessment Section Differ Assessment Type In Class Test % of Total Mark for Module 25 Assessment Type In Class Test % of Total Mark for Module 25 Indicative Week See Student Handbook Learning Outcomes 1,2,3,4 Assessment Threshold: 35 Assessment Role Individual No No No See Student Handbook Learning Outcomes 1,2,3,4 Assessment Authenticity No to Online Pass/Fail No No	Formal Examination					75.00%	
Assessments Formal Examination Assessment Type Written Examination % of Total Mark for Module 75 Assessment Types Week 14 Learning Outcomes 1,2,3,4,5,7,8 Assessment Authenticity Not Online Assessment Role Individual Assessment Description The main exam lasts for 2 hours Not Online Pass/Fail No Assessment Type In Class Test % of Total Mark for Module 25 Assessment Types In Class Test Ko of Total Mark for Module 25 Indicative Week See Student Handbook Learning Outcomes 1,2,3,4 Assessment Threshold: S5 Assessment Role Individual Indicative Week See Student Handbook Learning Outcomes 1,2,3,4 Assessment Authentricity Not Online Pass/Fail No	Other Assessment(s)					25.00%	
Formal Examination Seases S	Assessments						
Assessment TypeWritten Examination% of Total Mark for Module75Indicative WeekWeek 14Learning Outcomes1,2,3,4,5,7,8Assessment Threshold:35Assessment RoleIndividualAssessment AuthenticityNot OnlinePass/FailNoAssessment Description The main exam lasts for 2 hoursIn Class TestSSter Assessment TypeIn Class Test% of Total Mark for Module25Assessment TypeIn Class TestLearning Outcomes1,2,3,4Assessment Threshold:35Assessment Role1,2,3,4Assessment Threshold:35Assessment RoleIndividualAssessment Threshold:35Assessment Role1,2,3,4Assessment Threshold:35Assessment RoleIndividualAssessment AuthenticityNot OnlinePass/FailNoAssessment Threshold:35Assessment RoleIndividualAssessment AuthenticityNot OnlinePass/FailNoAssessment Threshold:35Assessment RoleIndividualAssessment AuthenticityNot OnlinePass/FailNo	Formal Examination						
Indicative WeekWeek 14Learning Outcomes1,2,3,4,5,6,7,8Assessment Threshold:35Assessment RoleIndividualAssessment AuthenticityNot OnlinePass/FailNoAssessment Description The main exam lasts for 2 hours	Assessment Type		Written Examination	% of Total I	lark for Module	75	
Assessment Threshold: 35 Assessment Role Individual Assessment Authenticity Not Online Pass/Fail No Assessment Description The main exam lasts for 2 hours Individual No Deter Assessment Type In Class Test % of Total Mark for Module 25 Assessment Threshold: See Student Handbook Learning Outcomes 1,2,3,4 Assessment Authenticity Not Online Pass/Fail Individual	Indicative Week		Week 14	Learning O	utcomes	1,2,3,4,5,6,7,8	
Assessment Authenticity Not Online Pass/Fail No Assessment Description The main exam lasts for 2 hours	Assessment Thresh	old:	35	Assessmer	t Role	Individual	
Assessment Description The main exam lasts for 2 hours Dther Assessment(s) Other Assessment Type In Class Test % of Total Mark for Module 25 Assessment Type k See Student Handbook Learning Outcomes 1,2,3,4 Assessment Threshold: 35 Assessment Role Individual Assessment Authenticity Not Online Pass/Fail No	Assessment Authen	ticity	Not Online	Pass/Fail		No	
Other Assessment(s) Assessment Type In Class Test % of Total Mark for Module 25 Assessment Type See Student Handbook Learning Outcomes 1,2,3,4 Assessment Threshold: 35 Assessment Role Individual Assessment Authenticity Not Online Pass/Fail No	Assessment Description The main exam lasts for 2 hours						
Assessment TypeIn Class Test% of Total Mark for Module25Indicative WeekSee Student HandbookLearning Outcomes1,2,3,4Assessment Threshold:35Assessment RoleIndividualAssessment AuthenticityNot OnlinePass/FailNo	Other Assessment(s)					
Indicative Week See Student Handbook Learning Outcomes 1,2,3,4 Assessment Threshold: 35 Assessment Role Individual Assessment Authenticity Not Online Pass/Fail No	Assessment Type		In Class Test	% of Total I	lark for Module	25	
Assessment Threshold: 35 Assessment Role Individual Assessment Authenticity Not Online Pass/Fail No	Indicative Week	ndicative Week See Student Handbook Learning Outcomes 1,2,3,4					
Assessment Authenticity Not Online Pass/Fail No	Assessment Thresh	sment Threshold: 35 Assessment Role Individual					
Vacasament Description	Assessment Authen	ticity	Not Online	Pass/Fail		No	
Assessment Description The in-class test consists of several compulsory problems	Assessment Descrip The in-class test cons	otion ists of several comp	pulsory problems				

Module MATH 4842 - Mathematical Methods II v1 (Year/Cycle:2 / Semester:Semester 1 / Delivery Type:Mandatory)

Module Activity	
Part Time hours per semester	
Activity Type	Duration (Hours)
Lecture	39
Self Directed	111
Hours (up to 100 for 5 ECTS credits)	150.00
Recommended Reading List	

Recommended Book Resources

S. Hassani. (2009), Mathematical Methods for Students of Physics and Related Fields, 2e. Springer-Verlag.

N.N. Lebedev. (1972), Special Functions and Their Applications, Dover Publications.

R. Weinstock. (1974), Calculus of Variations, Dover Publications.

Supplementary Book Resources

G.B. Arfken and H.J.Weber. (2005), Mathematical Methods for Physicists, 6e. Academic Press.

S. Hassani. (2002), Mathematical Physics – A Modern Introduction to its Foundations, Springer-Verlag.

M. Boas. (2005), Mathematical Methods in the Physical Sciences, 3e. Wiley.

MATH 4843: Topics in Analysis 1

Module Details	
Module Code:	MATH 4843
Module Long Title:	Topics in Analysis 1 APPROVED
Banner Title:	MATH 4843 Topics in Analysis 1
Version:	1
Indicative NFQ level:	Level 8
Valid From:	Sept 2019 (September 2019)
Language of Instruction:	English
ECTS Credits::	7.5
ISCED Code:	0541 - Mathematics
Current Coordinator::	SUSAN LAZARUS
Module Coordinators:	SUSAN LAZARUS (06 December 2019 to)
School Responsible:	School of Mathematical Sciences (CC)
Campus:	City Campus
Module Overview	The learner is introduced to metric spaces, and shown how the notion of distance yields the concepts of convergence of sequences, closed sets and continuity. We study the concept of completeness, Banach's Fixed Point Theorem and its applications. Normed linear spaces are introduced, and in particular Banach Spaces.
Indicative Syllabus	Metric Spaces The axioms of a metric space, examples of metric spaces including function and sequence spaces, convergence, continuity, open and closed sets, completeness. Banach's Fixed-point Theorem Statement and proof of the theorem. Applications to differential equations and linear equations. Normed Linear Spaces The axioms of a normed linear space, examples of normed linear spaces, properties of a norm, Banach Spaces.
Learning and Teaching Methods	Lectures supported by tutorials

Module MATH 4843 - Topics in Analysis 1 v1 (Year/Cycle:2 / Semester:Semester 1 / Delivery Type:Mandatory)

Learning Outcomes				
Upon successful completion of this module the learner will be able to				
#				
MLO1	identify whether or not a given system is a metric space			
MLO2	demonstrate an understanding of the properties of a distance function			
MLO3	identify whether or not an algebraic structure satisfies the axioms of a normed linear space			
MLO4	demonstrate an understanding of the properties of a norm function,			
MLO5	be familiar and comfortable working with examples of normed linear spaces,			
MLO6	identify whether or not a given sequences converges in a metric space or normed linear space,			
MLO7	identify whether or not a metric space or normed linear space is complete,			
MLO8	identify whether or not given functions on metric spaces or normed linear spaces are continuous,			
MLO9	apply Banach's Fixed Point Theorem to relevant applications.			

Requisites

Module Content & Assessment				
Assessment Breakdown	%			
Formal Examination	75.00%			
Other Assessment(s)	25.00%			
Derogations from the General Assessment Regulations				
Threshold of 35% on written exam				

Assessments

Formal Examination			
Assessment Type	Written Examination	% of Total Mark for Module	75
Indicative Week	Week 14	Learning Outcomes	1,2,3,4,5,6,7,8,9
Assessment Threshold:	35	Assessment Role	Not yet determined
Assessment Authenticity	Not Online	Pass/Fail	No
Assessment Description End of Semester examination			
Other Assessment(s)			
Other Assessment(s)			
Other Assessment(s) Assessment Type	Practical Assignment	% of Total Mark for Module	25
Other Assessment(s) Assessment Type Indicative Week	Practical Assignment See Student Handbook	% of Total Mark for Module Learning Outcomes	25 1,2,3,4,5,6,7,8
Other Assessment(s) Assessment Type Indicative Week Assessment Threshold:	Practical Assignment See Student Handbook None	% of Total Mark for Module Learning Outcomes Assessment Role	25 1,2,3,4,5,6,7,8 Not yet determined
Other Assessment(s) Assessment Type Indicative Week Assessment Threshold: Assessment Authenticity	Practical Assignment See Student Handbook None Not Online	% of Total Mark for Module Learning Outcomes Assessment Role Pass/Fail	25 1,2,3,4,5,6,7,8 Not yet determined No

Module MATH 4843 - Topics in Analysis 1 v1 (Year/Cycle:2 / Semester:Semester 1 / Delivery Type:Mandatory)

Module Activity	
Full Time hours per semester	
Activity Type	Duration (Hours)
Lecture	39
Self Directed	111
Hours (up to 100 for 5 ECTS credits)	150.00

Module Details	
Module Code:	MATH 4841
Module Long Title:	Complex Analysis APPROVED
Banner Title:	Complex Analysis
Version:	1
Valid From:	Jan 2020 (January 2020)
Language of Instruction:	English
ECTS Credits::	7.5
ISCED Code:	0541 - Mathematics
Current Coordinator::	COLUM WATT
Module Coordinators:	COLUM WATT (07 January 2020 to)
School Responsible:	School of Mathematical Sciences (CC)
Campus:	City Campus
Module Overview	This module is devoted to the calculus of functions of a complex variable, that is, functions whose domain and range are regions of the complex plane rather than subsets of the real line. A grounding in functions of a complex variable is provided and the interplay between analytic and geometric factors in complex function theory is demonstrated. The module aims to develop the manipulative and reasoning skill of each student in this elegant and useful area of mathematics.
Indicative Syllabus	Review of complex numbers and their graphical representation. Manipulation of inequalities. Factorisation of complex polynomials. Contours, simple closed curves, open and connected subsets in the complex plane. Analytic Functions Functions of a complex variable, real and imaginary parts, differentiability. Analytic functions and the Cauchy-Riemann conditions. Laplace's equation: harmonic and conjugate harmonic functions. Polynomials, exponential, trigonometric, hyperbolic and logarithmic functions. Complex Integration Contour integrals, the Fundamental Theorem of Calculus, Cauchy's theorem, Cauchy's Integral Formula. Morera's theorem, Liouville's theorem and the Fundamental Theorem of Algebra. Taylor and Laurent Series Sequences, series and convergence in the complex plane. Power series: Taylor and Laurent series, uniform convergence of series. Classification of singularities and zeros. The Residue theorem and applications.

Learning and Teaching Methods	Lectures and tutorials.	
Indicative Syllabus		
1. Algebra and geometry of the complex plane 1.1) Review of complex numbers and their graphical representation. Manipulation of inequalities. Factorisation of complex polynomials. Contours, simple closed curves, open and connected subsets in the complex plane.		
2. Analytic Functions 2.1) Functions of a complex variable, real and imaginary parts, differentiability. Analytic functions and the Cauchy-Riemann conditions. Laplace's equation: harmonic and conjugate harmonic functions. Polynomials, exponential, trigonometric, hyperbolic and logarithmic functions.		

3. Complex Integration 3.1) Contour integrals, the Fundamental Theorem of Calculus, Cauchy's theorem, Cauchy's Integral Formula. Morera's theorem, Liouville's theorem and the Fundamental Theorem of Algebra.

4. Taylor and Laurent Series 4.1) Sequences, series and convergence in the complex plane. Power series: Taylor and Laurent series, uniform convergence of series. Classification of singularities and zeros. The Residue theorem and applications.

Module MATH 4841 - Complex Analysis v1 (Year/Cycle:2 / Semester:Semester 2 / Delivery Type:Mandatory)

Learning Outcomes					
Upon successful completion of this module the learner will be able to					
#					
MLO1	factor complex polynomials and manipulate inequalities involving complex variables				
MLO2	demonstrate an un	nderstanding of the complex logarithm, exponent	ial, trigonometric and hyperbolic functions and how they are r	elated	
MLO3	use the Cauchy-Ri	iemann conditions to check for analyticity			
MLO4	calculate the harm	calculate the harmonic conjugate of a given harmonic function			
MLO5	calculate contour in	ntegrals directly and, where appropriate, by the u	use of Cauchy's integral theorems		
MLO6	Calculate Taylor a	nd Laurent series and classify isolated zeros and	d singularities		
MLO7	evaluate real integ	rals by the use of Cauchy's residue theorem			
MLO8	use conformal map	ppings in the solution of Laplace's equation			
Requisites					
Assessment Thresh	old	There is a threshold of 35% on the main exam			
Module Conten	t & Assessmei	nt			
Assessment Breakd	own			%	
Formal Examination				75.00%	
Other Assessment(s)				25.00%	
Assessments					
Formal Examination					
Assessment Type		Written Examination	% of Total Mark for Module	75	
Indicative Week		Week 14	Learning Outcomes	1,2,3,4,5,6,7,8	
Assessment Thresh	old:	35	Assessment Role	Individual	
Assessment Authen	ticity	Not Online	Pass/Fail	No	
Assessment Description The main examination lasts for 2 hours					
Other Assessment(s	3)				
Assessment Type		In Class Test	% of Total Mark for Module	25	
Indicative Week		Week 7	Learning Outcomes	1,2,3,4,5	
Assessment Thresh	old:	Id: 35 Assessment Role Individual			
Assessment Authen	ticity	Not Online	Pass/Fail	No	
Assessment Description The in-class test consists of several compulsory problems.					

Module MATH 4841 - Complex Analysis v1 (Year/Cycle:2 / Semester:Semester 2 / Delivery Type:Mandatory)

Module Activity	
Part Time hours per semester	
Activity Type	Duration (Hours)
Lecture	39
Self Directed	111
Hours (up to 100 for 5 ECTS credits)	150.00
Recommended Reading List	
Recommended Book Resources	
E.B. Saff and A.D. Snider. (2003), Fundamentals of Complex Analysis, 3e. Prentice Hall.	
Supplementary Book Resources	
J. Reade. (2003), Calculus with Complex Numbers, CRC Press. J.W. Brown and R.V.Churchill. (2008), Complex Variables and Applications, McGraw-Hill.	

APPROVED

MATH 4844: Topics in Analysis 2

Module Details	
Module Code:	MATH 4844
Module Long Title:	Topics in Analysis 2 APPROVED
Banner Title:	MATH 4844 Topics in Analysis 2
Version:	1
Indicative NFQ level:	Level 8
Valid From:	Sept 2019 (September 2019)
Language of Instruction:	English
ECTS Credits::	7.5
ISCED Code:	0541 - Mathematics
Current Coordinator::	SUSAN LAZARUS
Module Coordinators:	SUSAN LAZARUS (06 December 2019 to)
School Responsible:	School of Mathematical Sciences (CC)
Campus:	City Campus
Module Overview	This is a continuation of the Topics in Analysis 1 module. We will study inner product spaces and Hilbert spaces, orthonormal bases, decomposition theorems for Hilbert spaces and an introduction to the theory of operators.
Indicative Syllabus	Hilbert Spaces Inner product spaces, orthogonality, orthonormal expansions, Fourier coefficients, Bessel's Theorem, Parseval's Relation, the Riesz-Fisher Theorem and orthogonal decomposition. Theory of Operators Bounded linear operators, linear functionals, dual spaces, the Riesz-Representation Theorem, the adjoint of an operator, self-adjoint operators, unitary operators.
Learning and Teaching Methods	Lectures supported by tutorials

Learning Outcomes			
Upon successful completion of this module the learner will be able to			
#			
MLO1	identify whether or not an algebraic structure satisfies the axioms of an inner product space,		
MLO2	work with inner products and their properties to prove results about inner product and normed linear spaces,		
MLO3	demonstrate an understanding of Bessel's Theorem and Parseval's Relations and the applications of these results		
MLO4	identify whether or not a given operator on a linear space is a linear operator,		
MLO5	identify whether or not a given operator on a normed linear space is a bounded linear operator,		
MLO6	be familiar with the space of bounded linear operators and comfortable working with the operator norm.		
MLO7	find the adjoint of a given linear operator and determine if the operator is Hermitian, unitary and/or normal.		

Requisites

Module Content & Assessment			
Assessment Breakdown	%		
Formal Examination	75.00%		
Other Assessment(s)	25.00%		
Derogations from the General Assessment Regulations			

Threshold of 35% on written exam

Assessments

Formal Examination			
Assessment Type	Written Examination	% of Total Mark for Module	75
Indicative Week	Week 14	Learning Outcomes	1,2,3,4,5,6,7
Assessment Threshold:	35	Assessment Role	Not yet determined
Assessment Authenticity	Not Online	Pass/Fail	No
Assessment Description End of Semester written exam			
Other Assessment(s)			
Other Assessment(s) Assessment Type	Practical Assignment	% of Total Mark for Module	25
Other Assessment(s) Assessment Type Indicative Week	Practical Assignment See Student Handbook	% of Total Mark for Module Learning Outcomes	25 1,2,3,4,5
Other Assessment(s) Assessment Type Indicative Week Assessment Threshold:	Practical Assignment See Student Handbook None	% of Total Mark for Module Learning Outcomes Assessment Role	25 1,2,3,4,5 Not yet determined
Other Assessment(s) Assessment Type Indicative Week Assessment Threshold: Assessment Authenticity	Practical Assignment See Student Handbook None Not Online	% of Total Mark for Module Learning Outcomes Assessment Role Pass/Fail	25 1,2,3,4,5 Not yet determined No

Module MATH 4844 - Topics in Analysis 2 v1 (Year/Cycle:2 / Semester:Semester 2 / Delivery Type:Mandatory)

Module Activity	
Full Time hours per semester	
Activity Type	Duration (Hours)
Lecture	39
Self Directed	111
Hours (up to 100 for 5 ECTS credits)	150.00